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Abstract. High contrast imaging for the detection and characterisation of exoplanets rests upon the instrument’s
capability to cancel the light of the host star. Unfortunately the combination of adaptive optics and coronagraphy is
not sufficient: the residual starlight, or speckle noise, may be relatively bright compared to the signal of the planet
and limits the detection sensitivity. These speckles find their origin in wavefront errors created by imperfections
in the optical components. As they evolve on various time scales, calibrating these speckles out is very tricky and
the suppression of the unavoidable residual speckle noise must be done by post-processing methods. The current
empirical post-processing methods for calibrating out theresidual speckles and detecting the potential exoplanets
are not sufficient with respect to the specifications to be reached by the new and future generations of instruments.
In this communication, we develop, in a bayesian framework,an inversion method that is based on an analytical
imaging model. The model links the instrumental aberrations to the speckle pattern on the image focal plane,
distinguishing between aberrations upstream and downstream of the coronagraph. This approach allows us to
estimate both the speckles and the object map using the fact that the object does not scale with the wavelength
as the speckle pattern does. We validate this method on realistic images with simulation conditions typical of a
SPHERE-like instrument. We assess the performance of the method for different contrasts between the star and
the planet flux.

1 Introduction

Ground-based instruments have now demonstrated the capability to detect planetary mass companions
[1,2] around bright host stars. By combining an adaptive optics (AO) system and coronagraphs, some
first direct detections from the ground have been possible infavorable cases, at large separations and
in young systems when low mass companions are still warm (≥ 1000 K) and therefore not too faint.
There is a very strong astrophysical case to improve the highcontrast detection capability (105 for a
young giant planet to 1010 for an earth-like planet in the near infrared) very close to stars (0.1” to 1”).

Several instruments will be capable of performing multispectral imaging and will allow charac-
terizing the planets by measuring their spectra. It is the case of GPI (Gemini) [3], Palm 3000 (Palo-
mar) [4], SPHERE (VLT) [5] and several others that will follow. By combining an extreme adaptive
optics (Ex-AO) and more accurate coronagraphs than before,the level of star light cancellation is
highly improved, leading to a better signal to noise ratio. Yet, the residual host star light is affected
by the instrument aberrations to form a pattern of intensityvariations or “speckle noise” on the final
image. Part of the speckles cannot be calibrated as they evolve on various time scales (neither fast
enough to smooth down a halo nor stable enough) and for this reason, these “quasi-static speckles” are
one of the main limitations for high contrast imaging.

A number of authors have discussed the challenge posed by theelimination of speckle noise in high
contrast multispectral images. Some of these methods use the wavelength dependence of the speckle
pattern to estimate it and subtract it from the image, while preserving both the flux and spectrum of
the planet. Sparks and Ford (2002) were the first to describe the so-called “spectral deconvolution”
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method in the framework of space-based observations for an instrument combining a coronagraph and
an integral-field spectrometer (IFS) [6]. The method is entirely based on a speckle intensity fit by low-
order polynomials as a function of wavelength, in the focal plane. But preserving the planet signals
from being eliminated with the speckles is challenging because the planet presence is not explicitly
modeled. Besides, some information on the measurement system can be very useful to disentangle a
planet from the speckle field. Burke et al. (2010) combined classical empirical techniques of differen-
tial imaging with a multi-wavelengthphase retrieval method to estimate the aberration pattern in the
pupil plane with a simple imaging model without a coronagraph [7]. The inversion algorithm is based
on a maximum-likelihood estimator, which measures the discrepancy between the data and an imaging
model. In the present case, Burke’s wavelength diversity method does not apply readily, as it assumes
non coronagraphic imaging, whereas we consider the highly non-linear case of a coronagraphic imag-
ing model.

That is why we propose to take advantage of a combined use of wavelength diversity and a
Bayesian inversion to jointly estimate the aberrations in the pupil plane and the planet map. The
joint estimation aims at taking up the challenge of preserving the planets signal. An advantage of the
Bayesian inversion is that it can potentially include an important regularization diversity to constrain
the problem, using for example prior information on the noise, the planet map (position, spectrum, ...)
or the aberrations. In the Bayesian framework, the criterion to be minimized is the sum of two terms:
the data fidelity term, which measures the distance between the data and the imaging model, and one
or some penalty terms. An important difficulty is to define a realistic coronagraphic imaging model
which depends on parameters (aberrations...) that can be either calibrated beforehand or estimated
from the data.

2 Parametric model of multi-spectral coronagraphic imagin g

In order to carry out the Bayesian inverse problem method, weneed to derive a parametric direct
model of coronagraphic imaging. We assume that, for an AO-corrected coronagraphic image at the
wavelengthλ, the direct model is the following sum of three terms, separating the residual corona-
graphic stellar halo, the circumstellar source (for which the impact of coronagraph is neglected) and
noisenλ: iλ (α) = f ∗

λ
· hc
λ

(α) +
[

oλ ⋆ hnc
λ

]

(α) + nλ (α) , where the data are:iλ (α), the image we have
access to,f ∗

λ
is the star flux andhnc

λ
(α), the non-coronagraphic point spread function (PSF) which can

be estimated separately. Solving the inverse problem is finding the unknowns: the objectoλ (α) and the
speckle fieldhc

λ
(α) which we also call the “coronagraphic PSF”.

A model description ofhc
λ

(α) directly depends on the turbulence residuals and optical wave front
errors. Sauvage et al. (2010) proposed an analytical expression for coronagraphic image with a distinc-
tion between upstream and downstream aberrations [8]. The considered optical system is composed
of a telescope, a perfect coronagraph and a detector plane. Some residual turbulent aberrationsδr(ρ, t)
are introduced in the telescope pupil plane.δr(ρ, t) is assumed to be temporally zero-mean, stationary,
ergodic. Because we consider only long exposure time with respect to turbulence timescales, these
turbulent aberrations contribute only through their spatial statistical properties: power spectral den-
sity S δr (α) or structure functionDφr . The static aberrations are separated into two contributions: the
aberrations upstream of the coronagraphδu(ρ), in the telescope pupil planePu(ρ) and the aberrations
downstream of the coronagraphδd(ρ) in the Lyot Stop pupil planePd(ρ). The perfect coronagraph is
defined as an optical device that subtracts a centered Airy pattern of maximal energy to the electromag-
netic field. Finally, the “coronagraphic PSF” depends on three parameters which define our system:
the aberrations mapsδu, δd andDφr .

Derivation of an approximate long exposure “coronagraphic PSF” model Assuming that all
the phases are small and that the spatial mean ofφu(ρ) andφd(ρ) are equal to zero on the aperture, we
derive a second-order Taylor expansion of expression 24 of [8]:
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whereP̃d (λρ) andδ̃u (λρ) are the Fourier transforms of the downstream pupil and upstream aberrations

respectively andP
[
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denotes the piston of the aberration mapδr (λρ, t).
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is a corrective term that compensates for the fact thatδr (λρ, t) is stationary and thus non-piston-free

on the aperture at every instant. Note that
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is the Airy pattern formed by the pupilPd (λρ).

This approximate expression brings physical insight to theSauvage et al. expression:

– The speckle patterns scales radially inλ and evolves in 1/λ2 in intensity in the data cube. It is
consistent with the analysis of Sparks and Ford [6], who perform fits of low-order polynomials as
a function of the wavelength after rescaling radially.

– The approximate expression can be separated into one staticterm and one turbulent term. The
turbulent term is simply the turbulent aberration power spectral density, as seen at the resolution of
the instrument, i.e., convolved by the output pupil Airy pattern. The static term is directly function
of the upstream aberrations.

– The downstream aberrations do not appear in the static term.This confirms that the role of the
aberrations upstream and downstream of the coronagraph is very different and that upstream aber-
rations are dominant in the final image.

– Four equivalent upstream aberration sets:δu(ρ), δu(−ρ), −δu(ρ) and−δu(−ρ), that we call “quasi-
equivalent” aberration maps, lead to the same image. This isfurther discussed in Section 3.3.

A study of this approximate model [9] showed that the image simulated with the approximate
model is too different from the one simulated with the Sauvage et al. expression: the computation of
the root mean square of the difference between the two images leads to an error of 29%. Consequently,
even if using the approximate model would considerably decrease the non-convexity of the criterion, it
would probably not lead to sufficiently good results. Nevertheless, and we will discuss this in Section 3,
this approximate model will be useful to improve the convergence of our criterion minimization, which
is a highly critical point.

Assumptions on the long exposure “coronagraphic PSF” model The information we get from
the approximate model study helps us define some key assumptions for the success of the speckle
field estimation with the Sauvage et al.’s long exposure “coronagraphic PSF” model. As they have a
quite different impact on the final image, it is important to distinguish the aberrations upstream and
downstream of the coronagraph. The downstream aberrationseffect is lower than that of the upstream
aberrations and furthermore, in foreseen systems, they areexpected to be much more stable and easier
to calibrate than upstream aberrations. Besides, as we consider long exposure images, the residual
turbulent aberrations will be averaged to form a smooth haloeasily distinguishable from a planet.
Furthermore, the statistical quantityDφr which characterizes this halo, will be measured through the
adaptive optics system wavefront sensor.Thus, in this paper, we assume that both the static downstream
aberrations and the residual turbulent aberrations are calibrated and known. This decreases the number
of unknowns as the only aberration map to estimate in order toget access to the “coronagraphic PSF”
is the quasi-static upstream aberrations. We shall thus denote the long exposure “coronagraphic PSF”
by hc

λ

(

δu; δd,Dφr

)

instead ofhc
λ

(

δu, δd,Dφr

)

to underline the fact thatδd andDφr are assumed to be
known.

3 Joint estimation of wavefront and object algorithm and min imization
strategy

3.1 Definition of the criterion to be minimized and joint esti mation

Following the Bayesian inverse problem approach, solving the inverse problem consists in finding
the unknowns, firstly the object characteristicso (α, λ) = {oλ (α)}λ, secondly the parameters of the
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speckle fieldhc
λ
(δu; δd,Dφr ) and f ∗ (λ) =

{

f ∗
λ

}

λ
, which are the most likely given the data and our prior

information about the unknowns. This boils down to minimizing the following criterion:

J(o, f ∗, δu) =
∑

λ

∑

α

1

2σ2
n,λ (α)

|iλ − f ∗λ · h
c
λ(δu; δd,Dφr ) − oλ ⋆ hnc

λ (δu; δd,Dφr )|
2 (α) + Ro + R f ∗ + Rδ + · · ·. (2)

This criterion is the sum of two terms: the data fidelity term,which measures the distance between
the data and the imaging model, and a non-exhaustive list of regularization terms on our unknowns
Ro, R f ∗ , Rδ. The noise varianceσ2

n,λ is assumed to be known. The star flux at each wavelength can be
analytically estimated from the criterion provided the regularization on flux is quadratic or absent.

The structure of the criterion of Eq. (2) prompted us to adopta joint estimation of wavefront and
object with an iterative algorithm, which alternates between estimation of the aberrations, assuming
that the object is known (multispectralphase retrieval) and estimation of the object assuming that the
aberrations are known (non-myopic multispectral deconvolution).

3.2 Non-myopic multispectral deconvolution

Thenon-myopic multispectral deconvolution is relatively well-known. The chosen regularization leads
to a convex criterionand thus to a unique solution for a givenset of aberrations.

The regularization termRo includes prior spatial and spectral information we have on the object.
We chose here a L1-L2 white spatial regularization which assumes the independence between the
pixels [10] because we are mainly looking for point sources.The spectral prior is based on the object
spectrum smoothness. We currently assume that the object iswhite (constant spectrum) but as the final
aim is to extract some spectra, for future validations we will use a L2 correlated spectral regularization
[11] which will involve at each pixel the differences between the spectrum at neighboring wavelengths
and will enforce smoothness on the object spectrum.

3.3 Phase retrieval: dealing with local minima

Choice of an appropriate starting point: very small random p hase In order to keep the com-
putation time reasonable, we use a local descent algorithm to minimize the criterion. Because the
latter is highly non-convex, the chosen starting point can lead or not to the global minimum of the
criterion. The solution is brought by assuming that the upstream aberrations are small enough at the
starting point so that we are fully in the conditions where the Taylor expansion developed in [9] is valid
and where the criterion is less non-convex. It allows the algorithm to avoid many wrong directions,
and thus many local minima. As the algorithm converges, the upstream aberration rms value increase
towards their true value and a gradual non-linearity of the model is little by little introduced.

Choosing an aberration map with a small rms value as a starting point of thephase retrieval allows
us to avoid some local minima by linearizing the highly non-convex model used in the inversion.

Avoiding some local minima by testing quasi-equivalent sta rting points In the approximate
model, four different aberration maps can give the same image (cf. Section 2). This means that, from a
given starting point, the minimization algorithm can take four different but equivalent directions from
the approximate model point of view. But from the point of view of the model used in the inversion
[8], it is not the case because it depends on downstream aberrations, which break the symmetry.

Consequently, a good solution from the point of view of the approximate model may be a not-so-
good one from the model used in the inversion point of view. The idea is then to perform an initializa-
tion step where the very small random phase is taken as a starting point. A firstphase retrieval stage
is performed with this starting point, leading to a first estimated aberration map denoted byδu

init,1(ρ).
Then, the three other quasi-equivalent aberration mapsδu

init,1(−ρ), −δu
init,1(ρ) and−δu

init,1(−ρ) are
taken as starting points for three otherphase retrieval stages. This leads to three more estimated aber-
ration maps denoted byδu

init,2, δu
init,3 andδu

init,4.
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Fig. 1. Block diagram of the algorithm used for the jointly estimation of the object map and static upstream
aberrations.

Avoiding some local minima in the multispectral inversions by taking the previously es-
timated aberration map as starting point In spite of setting up solutions in order to avoid the
local minima while the minimization criterion, we sometimes observe some minimization difficulties
in the case of inversions with more than two spectral channels. The reason of this problem has not
been identified. That is why we begin to do an inversion with one spectral channel. Then, we add one
spectral channel for a two-spectral channel inversion and we take the previous estimated aberration
map as a starting point. Doing this when adding some more spectral channels is a way of constraining
the problem, waiting for understanding the reason of these minimization difficulties.

3.4 Summary of the developed algorithm

Figure (1) summarizes the different steps of the developed algorithm. The choice of a very small ran-
dom phase as a starting point is essential because it avoids falling into some local minima (section 3.3).
An initialization phase is performed, testing the algorithm convergence for the four quasi-equivalent
solutions (section 3.3). The solution which leads to the smallest criterion value is selected. Then, the
minimization core is performed, alternating between the aberration estimation, assuming that the ob-
ject is known (multispectralphase retrieval, section 3.3), and the object estimation, assuming that the
aberrations are known (non-myopic multispectral deconvolution, section 3.2). Several iterations are
performed until the stopping rule of the algorithm is verified.

4 Validation of the inversion method by simulations

Test case: Data processing with “SDI” From a data cube of six images simulated with the image
formation model of Section 2 and the Sauvage et al. [8] analytical expression of coronagraphic imag-
ing, we jointly estimate the speckle field and the object map.The simulated instrumental conditions
are typical of a SPHERE-like instrument and the same as theseof Ygouf et al. [13]: upstreamδu and
downstreamδd aberrations respectively simulated with standard deviation of 30 nm and 97 nm, star-
planet angular separations of 0.2 and 0.4 arcsec, contrasts, i.e. ratio of star flux over planet flux of 105,
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(a) Object map and mid-
dle region

(b) Image of the object
map in the focal plane

(c) Aberration map (d) Image of the speckle
field in the focal plane

Fig. 2. Simulated images atλ = 950nm. (a) Simulated object map and (b) associated image in the focal plane.
The image is obtained by convolving the object mapoλ by the non-coronagraphic psfhnc

λ . (c) Simulated aberra-
tions and (d) associated image of the speckle field in the image focal plane. The image is given by the “corona-
graphic PSF”hc

λ.

106 and 107, a [950 nm ; 1647 nm] spectral bandwidth and a maximum flux per pixel of 108 on the
data cube in presence of photon noise corresponding to the observation of a 6-magnitude star for 30
minutes with the VLT.

Figure (2) shows the simulated objet map (2(a)) and the associated image in the focal plane (2(b)).
Figure 2 shows the simulated aberration map (2(d)) and the associated image of the speckle field
in the focal plane (2(d)). In the following, we focus on the middle region defined in Figure (2(a)).
Materialized by the two white circles, this is a ring from 2 to20 λ/D which corresponds to angular
distances between≃ 0, 05” and≃ 0, 5” at 950 nm. In this region, the adaptive optics compensates
for the turbulent aberrations. Quasi-static aberrations are dominant, thus they limit the detection. For
this reason, this is the region which interests us the most tostudy the convergence capabilities of our
algorithm.

We process the simulated images with an optimized “SDI” in order to have a comparison point
to estimate the performance of our method. We compare quantitatively the stellar residuals which
will limit the detection capability, after post-processing. To do this, we consider the two following
bandwidths: [950 nm ; 1650 nm] and [950 nm ; 1150 nm]. The first bandwidth is typical of an IFS-
SPHERE-like instrument but this spectral separation is notfavorable to the SDI. The second band-
width is closer to separations we have when using differential filters. For each bandwidth, we take
the images at the minimum and maximum wavelengths and we rescale the image at 950 nm with
respect to the images at 1150 nm and 1650 nm. Finally, we perform the following spectral differ-
ences between the two images:idiff1650 = i1650 nm− γi950 nmandidiff1150 = i1150 nm− γi950 nm, where
γ is a coefficient which minimize the squared difference|imax− γimin|

2 on the middle regionm(ρ).
γ is the coefficient that minimized the squared difference on this region and is given by [12]:γ =
∑

ρ m(ρ)i950 nm(ρ)i1650 nm(ρ)/
∑

ρ m(ρ)i21650 nm(ρ), where m is a mask that is equal to 1 on the pixels be-
longing to the middle region and 0 elsewhere. This two-channel subtraction reduces the level of stellar
halo by a factor 10 (resp 4) in the middle region for the bandwidth [950 nm ; 1150 nm] (respectively
[950 nm ; 1650 nm]).

Inversion with only one spectral channel We jointly estimate the upstream quasi-static aberration
map and the object map with only one spectral channel at 950 nm. Figure (3(a)) compares the residual
speckles in the focal plane after post-processing with the “optimized” SDI method and our method,
with respect to the image before post-processing. The inversion with only one spectral channel allows
a 81-fold gain to the speckle subtraction, in the middle region defined in Figure (2(a)). Figure (3(b))
compares the estimated object image in the focal plane (right) to the simulated one (left). Even if
many residuals from the turbulent halo and residual speckles subsist on the object image, one of the
planets, that with a contrast of 105, is detected at the right position. This result shows our algorithm
convergence capability in spite of the degeneracy difficulties and the presence of local minima.
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(a) Speckle fields.With the same dynamic, at 1650 nm: (left) image
before post-processing and speckle residuals after post-processing
with (middle) SDI and with (left) a one-spectral channel inversion.
For visualization reasons, the last image was rescaled from950 nm
to 1650 nm.

(b) Images of object. With the same dy-
namic, at 950 nm: (left) simulated and (right)
estimated planet image

[

oλ ⋆ hnc
λ

]

(x, y) with
a one-spectral channel inversion.

Fig. 3. Inversion with one spectral channel.

(a) Speckle fields.Speckle residuals after
post-processing, with the same dynamic:
(left) inversion with one spectral channel and
(right) two spectral channels.

(b) Images of object.Simulated (left) and
estimated planets images

[

oλ ⋆ hnc
λ

]

(x, y), at
950 nm with the same dynamic: (middle) in-
version with one spectral channel and (right)
two spectral channels.

Fig. 4. Inversion with multispectral data cubes.

Inversion with multispectral data cubes We jointly estimate the upstream quasi-static aberration
map and the object map with multispectral data. The inversion is realized with two, three, four, five
and six spectral channels taken in the simulated data cube ofsix images.

The speckle field estimation in the focal plane is improved with the multispectral inversion as
shown in Figure (4(a)). The right image is the subtraction between the simulated speckle field and the
estimated one, the former being the result of the inversion with two spectral channels. The inversion
with two spectral channels allows a gain of a factor 2000 in the speckle subtraction in the middle
region defined in Figure (2(a)).

Figure (4(b)) compares the estimated object image for inversions with one (left) and two (right)
spectral channels. With two spectral channels, the two planets with a contrast of 106 are detected at the
right position, in addition to the planet with a contrast of 105. The planet with a contrast of 107 is not
detected because it is flooded by the photon noise. The turbulent halo residuals in the final image, very
strong with the one-image inversion, are attenuated by using more images for the inversion. The results
with more spectral channels than two are not represented here because they lead to the same visual
aspects as those with two spectral channels. The evolution of the rms value of the difference between
the simulated and the estimated object images is represented in Figure (5), for all the images, in the
middle region defined in Figure (2(a)). The rms value of the difference between the simulated and the
estimated images decreases with the number of wavelengths used for the inversion. This confirms that
adding some more wavelengths, thus more information, improves the joint estimation performance.
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Number of wavelengths used in the inversion
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Fig. 5. Inversion with multispectral
data cubes.Evolution of the rms value
of the difference between the simulated
and the estimated object images as a
function of the number of spectral chan-
nels used in the inversion, in the middle
region defined in Figure (2(a)).

5 Conclusion

We have proposed an original method of image restoration forthe new generation of planet finders. For
the first time, a fine parametric model of coronagraphic imaging, describing the instrument response,
is used for the inversion of simulated multispectral images, in a solid statistical framework. The choice
of a Bayesian approach allows to use a wide variety of prior information either about the system
(aberrations, flux, noise) and about the object of interest.An interest of the method is the possibility
of adjusting the weight of the prior information according to the instrumental aberrations and object
knowledge and the instrument stability.

In order to set up this method, we have developed an iterativealgorithm which estimates jointly the
object (non-myopic multispectral deconvolution) and the aberrations (multispectral phase retrieval).
Estimating the aberrations is a difficult issue because of the high non-linearity of the coronagraphic
imaging analytical model and the number of unknowns to estimate (about 103 in our case). Nev-
ertheless, we have demonstrated the convergence capabilities of the algorithm, by bringing original
solutions to the minimization difficulties of thephase retrieval.

The restoration of images simulated with a perfect coronagraph is very encouraging for the extrac-
tion of planetary signals at levels beginning to be astrophysically interesting. We have demonstrated
the efficiency of the method even with only one spectral channel, by achieving a contrast of 105 at 0.2
arcsec. Multispectral redundancy improves the detection as soon as we add one more spectral channel,
allowing to achieve a contrast of 106 at 0.2 arcsec.

We thus believe that multispectral approach will be determining when we confront it with exper-
imental data. This deserves to be studied, as well as how the performance will evolve in the different
cases of images simulated with a non-perfect coronagraph, real images from the SPHERE instrument
on lab or real images from an instrument on-sky.
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