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ABSTRACT

Exo-planet detection is a signal processing problem that can be addressed by several detection approaches.
This paper provides a review of methods from detection theory that can be applied to detect exo-planets in
coronographic images such as those provided by SPHERE and GPI. In a first part, we recall the basics of signal
detection and describe how to derive a fast and robust detection criterion based on a heavy tail model that can
account for outliers in the residuals. In a second part, we derive detectors that handle jointly several wavelengths
and exposures and focus on an approach that prevents from interpolating the data, thereby preserving the
statistics of the original data.

Keywords: Exo-planet detection; multi-variate data processing.

The detection of exo-planets in coronographic images is one of the most challenging data processing task for
new instruments like SPHERE and GPI. The difficulty is that the planets must be sought in images where the
stellar leakage forms speckles which largely dominate the planetary signal.1,2 In this context, robust detection
methods may be more suitable as they can take into account the imperfect speckle suppression achieved by image
processing methods based on image differences (ADI, SDI) or principal component analysis (PCA) for instance.
We recently proposed3 to use Cauchy distributions (rather than Gaussian ones) to achieve robust detection and
showed that the corresponding Locally Most Powerful test (LMP) can then be computed on large images by
means of FFTs. We have generalized this to other distribution than Cauchy.4 In this contribution, we first show
how to generalize the LMP test to multi-spectral and multi-temporal data, in the case of Gaussian noise this
closely follows what has been proposed for Darwin.5

1. ROBUST DETECTION OF A KNOWN PATTERN IN A SINGLE IMAGE

1.1 Detection Principles

Detecting an object given the measurements y ∈ RM amounts to deciding between the following two hypotheses:

H0: y = n , (1)

H1: y = αm(θ) + n , (2)

where n ∈ RM is a nuisance term (noise and irrelevant background), m(θ) ∈ RM is the footprint of the object
and α is the amplitude of the signal. The footprint of the object non-linearly depends on the parameters θ. For
example, in the case of the detection of exo-planets, θ is the position of the planet and mi(θ) ∝ h(ξi, θ) with ξi
the position of the i-th pixel and h(ξ, θ) the point spread function (PSF) at detector position ξ for a source at
position θ.
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Given the object parameters, here α and θ, the following likelihood ratio test (LRT) is optimal to decide
between the two hypotheses:

LRT:
p(y |H1)

p(y |H0)
=
pn(y − αm(θ))

pn(y)

H1

≷
H0

γ , (3)

where p(y |Hk) is the likelihood of the data under hypothesis Hk, pn is the probability density function of
the nuisance terms and γ > 0 is a chosen threshold. In words, the detection is decided if it is γ times more
likely that there is an object (with given parameters α and θ) rather than no object. The LRT, also known as
Neyman-Pearson clairvoyant test, minimizes the probability of error for any fixed probability of detection but
requires to know the object parameters, here α and θ. In practice none of these parameters are known and the
test must be relaxed to account for this. Substituting the unknown parameters by their maximum likelihood
values leads to the generalized likelihood ratio test (GLRT):

GLRT:

max
α,θ

p(y |α, θ; H1)

p(y |H0)
=
p(y | α̂, θ̂; H1)

p(y |H0)

H1

≷
H0

γ , (4)

where: {
α̂, θ̂

}
= max

α,θ
p(y |α, θ; H1) , (5)

are the maximum likelihood estimators for the parameters α and θ.

1.2 Fast Detection for Independent Gaussian Noise

Assuming the nuisance terms follow a centered Gaussian distribution, say n ∼ N (0,Γ), and taking the logarithm
(which is a monotonous function) of the likelihood ratio, the LRT writes:

LRT: log

(
p(y |H1)

p(y |H0)

)
= αm(θ)tW y − α2

2
m(θ)tW m(θ)

H1

≷
H0

τ , (6)

with τ = log γ and W = Γ−1 the inverse of the covariance matrix of the nuisance terms. The expression in the
left hand side of the test can be maximized in α to yield the maximum likelihood amplitude conditioned to the
knowledge of θ:

α̂(θ) = max
α

p(y |α, θ; H1) =
m(θ)tW y

m(θ)tW m(θ)
. (7)

Then replacing α by α̂(θ) yields the following GLRT:

GLRT: max
θ

{
TGLR(θ) =

∣∣m(θ)tW y
∣∣√

m(θ)tW m(θ)

}
H1

≷
H0

η , (8)

with η =
√

2τ . The criterion TGLR(θ) is in general not convex in θ, thus solving the above problem requires to
implement a global optimization strategy. An important feature would then to be able to quickly compute the
following terms:

a(θ) = m(θ)tW m(θ) , (9a)

b(θ) = m(θ)tW y . (9b)

In the case of stationary PSF*, i.e. h(ξ, θ) = h(ξ − θ), and independent noise, i.e. W = diag(w), the above
terms amount to computing correlation products at position θ. Sampling these correlation products at θ = ξi
for all pixel indices i can be done very quickly by means of the fast Fourier transform (FFT):

a(θ) =
∑
i

h2(ξi − θ)wi =⇒ a(ξi) = [(h⊗ h)~ w]i , (10a)

b(θ) =
∑
i

h(ξi − θ)wi yi . =⇒ b(ξi) = [h~ (w ⊗ y)]i , (10b)

*or more generally for the detection of a shift invariant footprint



where wi is the weight of the i-th pixel, ⊗ denotes the componentwise multiplication and ~ denotes the discrete
2D correlation over the grid of pixels. To avoid aliasing in these computations, it is necessary to properly zero-
pad3,6 the images w, y and h. The most likely position of a source, at the pixel precision, is then ξı̂ where ı̂ is
given by:

ı̂ = arg max
i

|a(ξi)|√
b(ξi)

.

1.3 Accounting for the Positivity of the Brightness

For exo-planet detection, the parameter α represents the brightness of the source and necessarily α ≥ 0. The
maximum likelihood nonnegative amplitude conditioned to the knowledge of the position θ is now given by:

α̂(θ) = max
α≥0

p(y |α, θ; H1) =
max

(
0,m(θ)tW y

)
m(θ)tW m(θ)

=

(
m(θ)tW y

)
+

m(θ)tW m(θ)
, (11)

where (. . .)+
def
= max(0, . . .). Replacing α by α̂(θ) yields the following GLRT:

GLRT: max
θ

{
TGLR(θ) =

(
m(θ)tW y

)
+√

m(θ)tW m(θ)

}
H1

≷
H0

η . (12)

For a shift-invariant PSF and independent noise, the same tricks as before can be used to quickly locate the most
likely position at the pixel precision:

ı̂ = arg max
i

max(a(ξi), 0)√
b(ξi)

.

1.4 Locally Most Powerful Test

Assuming Gaussian distribution for the nuisance terms is however not very robust against false detections due to
outliers for instance. A heavy tailed distribution as the Cauchy one is preferable. The GLRT becomes however
very costly to apply as it requires to compute α̂(θ) for every trial location θ while there is no closed form solution
for the optimal amplitude α̂(θ).

Rao7 has proposed the following test:

1

Iα(θ)

(
∂ log p(y |α, θ)

∂α

)2 ∣∣∣∣
α=0

H1

≷
H0

η , (13)

for some threshold η and where Iα(θ) is Fisher’s information for the parameter α knowing α and θ:

Iα(θ) = −E
{
∂2 log p(y |α, θ)

∂α2

}
= E

{(
∂ log p(y |α, θ)

∂α

)2
}
≥ 0 , (14)

where E{. . .} denotes expectation. The advantage of Rao’s test is that the expression to compute does not
depend on the value of α as it is evaluated for α = 0.

When α is known to be nonnegative, Rao’s test becomes:

Iα(θ)−
1
2
∂ log p(y |α, θ)

∂α

∣∣∣∣
α=0

H1

≷
H0

√
η , (15)

and it can be proven that this test is the locally most powerful test (LMPT).7 That is to say, in the regime of
weak signals (α→ 0+) it maximizes the probability of detection for any given probability of false alarm.



1.5 Robust Test

To implement a robust yet general test based on the LMPT, we have recently proposed3,4 to assume that, after
a normalization, the nuisance terms are independent and identically distributed (i.i.d.). Let:

ti
def
=
yi − αmi(θ)

si
, (16)

be the normalized residuals for some si > 0, then our assumptions lead to write the likelihood of the data as:

p(y |α, θ; H1) =
∏
i

exp(−ϕ(ti)) , (17)

where ϕ(t) is the co-log-likelihood of the normalized residuals. The first derivative of the likelihood of the data
with respect to α writes:

∂ log p(y |α, θ; H1)

∂α
=
∑
i

mi(θ)

si
ϕ′
(
yi − αmi(θ)

si

)
,

which gives one of the terms of the LMPT:

∂ log p(y |α, θ; H1)

∂α

∣∣∣∣
α=0

=
∑
i

mi(θ)

si
ϕ′(yi/si) . (18)

The second derivative with respect to α of the log-likelihood is:

∂2 log p(y |α, θ; H1)

∂α2
= −

∑
i

m2
i (θ)

s2i
ϕ′′(ti) ,

which is needed to compute Fisher’s information on parameter α:

Iα(θ) = −E
{
∂2 log p(y |α, θ; H1)

∂α2

}
=
∑
i

E{ϕ′′(ti)}
m2
i (θ)

s2i
.

From our assumption that the ti are i.i.d., it follows that E{ϕ′′(ti)} = β whatever i, where β is given by:

β =

∫ +∞

−∞
ϕ′′(t) exp(−ϕ(t)) dt . (19)

Finally, Fisher’s information on the parameter α writes:

Iα(θ) = β
∑
i

m2
i (θ)

s2i
, (20)

which, incidentally, does not depend on α.

Putting all together:

TLMP(θ) =

∑
i
mi(θ)
si

ϕ′(yi/si)√
β
∑
i
m2

i (θ)

s2i

(21)

Let us introduce the following pixelwise weights (accounting for zero-padding to avoid aliasing issues3,6):

wi =

{
1/si if i-th data is valid;

0 otherwise;
(22)

then computing TLMP(θ) for any θ ∈ {ξi}i=1,...,M (the regular grid of observed pixels) can be computed as:

TLMP(θ = ξi) =

∑
i′
mi′ (ξi)
si′

ϕ′(yi′/si′)√
β
∑
i′
m2

i′ (ξi)

s2
i′

=
[m~ (w ⊗ z)]i√

β [(m⊗m)~ (w ⊗ w)]i
(23)

where z ∈ RM is a separable non-linear transform of the data:

(∀i) zi
def
= ϕ′(yi/si) . (24)



2. DETECTION IN MULTI-VARIATE DATA

For multi-exposure data, the apparent position of a planet in the field of view of the instrument may vary with
the time. In the case of a pupil-stabilized instrument like SPHERE or GPI, this motion is however deterministic
and we denote by ζ(t, θ) the apparent position of the planet at time t assuming the planet was at position θ at
some given reference date tref ; hence ζ(tref , θ) = θ. For multi-spectral, multi-temporal images (e.g., as provided
by Sphere IFS), the model of available data under hypothesis H1 becomes:

yj,k,` = f(λ`)hk,`(ξj , ζk(θ)) + nj,k,` , (25)

where f(λ`) is the spectral energy distribution (SED) of the planet at the effective wavelength λ` of the `-th
spectral channel, hk,`(ξ, ζ) is the PSF in the `-th spectral channel during the k-th exposure, ξj is the position of
the j-th pixel of the considered data frame, ζk(θ) = ζ(tk, θ) is the apparent position of the planet at the date tk
of the observation and, as before, nj,k,` is a nuisance term. Compared to the previous Section, the data index
i ∼ (j, k, `) has now three components: j, k and ` are respectively the indexes of the pixel, of the exposure and
of the spectral channel.

Using matrix notation, the direct model can be expressed as:

y = H(θ) f + n ,

where f is a vector whose components are the SED of the planet in the different spectral channels, f` = f(λ`)
(∀`), and H(θ) is a tensor whose coefficients are Hj,k,`(θ) = hk,`(ξj , ζk(θ)). The tensor product above reads:

[H(θ) f ]j,k,` = Hj,k,`(θ) f` .

2.1 Gaussian Noise Distribution

Assuming the nuisance terms have a centered Gaussian distribution, the co-log-likelihood of the data writes:

− log p(y | f, θ; H1) = (1/2) ‖y −H(θ) f‖2W + const. , (26)

and the maximum likelihood estimator of the planetary SED knowing θ solves the following normal equations:

f̂(θ) = arg min
f

‖y −H(θ) f‖2W = A(θ)−1 b(θ) , (27)

with:

A(θ) = H(θ)tW H(θ) ⇐⇒ (∀`,∀`′) A`,`′(θ) =
∑

j,k,j′,k′

Hj,k,`(θ)
tWj,k,`,j′,k′,`′ Hj′,k′,`′(θ) , (28a)

b(θ) = H(θ)tW y ⇐⇒ (∀`) b`(θ) =
∑

j,k,j′,k′,`′

Hj,k,`(θ)
tWj,k,`,j′,k′,`′ yj′,k′,`′ . (28b)

After simplifications, the (squared) criterion in the GLRT writes:

T 2
GLR(θ) = ‖y‖2W −min

f
‖y −H(θ) f‖2W = b(θ)tA(θ)−1 b(θ) = b(θ)t f̂(θ) . (29)

Quite interestingly, f̂(θ) being a linear estimator with respect to the data, cf. Eq. (27), it is straightforward to
establish that:

Cov{f̂(θ)} = A(θ)−1 , (30)

is the covariance of the estimator f̂(θ). Furthermore, it can be shown8 that f̂(θ) is the best linear unbiased
estimator (Blue) of the SED knowing the planet position θ at the reference time. Using the covariance and the
expression in Eq. (27), the GLRT criterion can be rewritten as:

T 2
GLR(θ) = f̂(θ)t Cov{f̂(θ)}−1 f̂(θ) . (31)

Thus T 2
GLR(θ) is the quadratic sum of the SNR of the estimator of the SED in the different spectral channels.

The most likely detection occurs for the position θ where the total SNR of the SED is maximized. This result
generalizes to correlated Gaussian noise an observation made by Mugnier et al.9 for multi-spectral data with
independent Gaussian noise. Note that, to evaluate the GLRT criterion, one has to compute A(θ) and b(θ) thus
the maximum likelihood planet SED given its position θ is a by-product of the detection.



2.2 Independent Gaussian Noise Approximation

For correlated Gaussian noise, the nonnegativity constraint is more difficult to apply even though constrained
optimization can be used to derive the maximum likelihood of the nonnegative SED.5 Assuming independent
Gaussian noise, the weighting tensor W becomes diagonal, i.e. Wj,k,`,j′,k′,`′ = δj,j′ δk,k′ δ`,`′wj,k,`, and the
problem to solve becomes independent in λ (that is index `). Accounting for the positivity of the SED, the most
likely planet SED knowing the position θ of the planet at tref is directly derived from what precedes:

f̂`(θ) = min
f`≥0
‖y −H(θ) f‖2W =

max
(
b`(θ), 0

)
a`(θ)

, (32)

with:

a`(θ) =
∑
j,k

H2
j,k,`(θ)wj,k,` , (33a)

b`(θ) =
∑
j,k

Hj,k,`(θ)wj,k,` yj,k,` . (33b)

The criterion for the GLRT becomes:

T 2
GLR(θ) =

∑
`

max
(
b`(θ), 0

)2
a`(θ)

. (34)

The covariance of the estimator f̂`(θ) in Eq. (32) is diagonal. However, due to the positivity, 1/a`(θ) is not equal

to the variance of f̂`(θ) and T 2
GLR(θ) is therefore not strictly the quadratic sum of the SNR in every spectral

channel. Now it remains to find the maximum likelihood planet position (under hypothesis H1):

θ̂ = arg max
θ

TGLR(θ) .

2.3 Fast Computation under the Independent Gaussian Noise Approximation

Provided we consider planets not too close to the coronographic mask, we can assume that the off-axis PSF is
stationary. Then:

hk,`(ξ, ζ) = hk,`(ξ − ζ) , (35)

assuming that the pixel and planet positions, ξ and ζ, are expressed in the same coordinate system. In the
previous equations, the coefficients of the tensor H become:

Hj,k,`(θ) = hk,`(ξj − ζk(θ)) , (36)

and it appears that computing a`(θ) (resp. b`(θ)) involves computing the correlation of the squared PSF with
the weights (resp. of the PSF with the weighted data). In order to exploit fast computations and following
the developments in Section 2.3, we propose to compute the following maps (for every exposure and spectral
channel):

aj,k,` =
∑
j′

h2k,`(ξj′ − ξj)wj′,k,` = [(hk,` ⊗ hk,`)~wk,`]j , (37a)

bj,k,` =
∑
j′

hk,`(ξj′ − ξj)wj′,k,` yj′,k,` =
[
hk,` ~

(
wk,` ⊗ yk,`

)]
j
. (37b)

which amounts to assuming that the planet position at time tk coincides with the j-th pixel: ζk(θ) = ξj . As
before, these expressions are discrete correlations which can be quickly computed by means of the FFT after
proper zero-padding to avoid aliasing.6 The boldface notation above indicates 2D maps sampled on the grid of
the pixels: [hk,`]j = hk,`(ξj),

[
yk,`

]
j

= yj,k,` and
[
yk,`

]
j

= yj,k,`. As such maps are rather smooth�, the value of

�because they involve correlation by the PSF of the squared PSF; otherwise subdivide pixels



a`(θ) and b`(θ), defined in Eq. (33a) and (33b), can be approximated by simple interpolation of the precomputed
maps and then summed for the time index k:

a`(θ) ≈
∑
k

∑
j
Sj(ζk(θ)) aj,k,`︸ ︷︷ ︸

� interpolation of aj,k,` at ζk(θ)

, (38a)

b`(θ) ≈
∑
k

∑
j
Sj(ζk(θ)) bj,k,`︸ ︷︷ ︸

� interpolation of bj,k,` at ζk(θ)

, (38b)

where a`(θ) and b`(θ) were defined in Eq. (33a) and Eq. (33b) while Sj(ξ) denotes the coefficients of a spatial
interpolation operator S(ξ) which interpolates at position ξ a map sampled on the grid ξj of pixels. For the sake
of simplicity, we assumed that the same interpolation operator is used for a`(θ) and b`(θ), although different
interpolation operators could be used for improved accuracy. Interpolation for a given position is a fast oper-
ation10 and the GLRT criterion given in Eq. (34) can be quickly estimated for any assumed position θ of the
planet at tref . This provides a fast means to perform planet detection in multi-spectral and multi-temporal data
without data interpolation.

2.4 Robust Detection in Multi-variate Data

To apply the LMPT defined in Section 1.4 to multivariate data, we can rewrite the direct model of the data as:

yj,k,` = α f(λ`)hk,`(ξj , ζk(θ)) + nj,k,` (39)

where α ≥ 0 is the brightness of the planet and, now, f(λ) is its normalized SED. If f(λ) is known, the LMP
test directly applies:

TLMP(θ) =

∑
i,k,` f(λ`)Hj,k,`(θ)wj,k,` ϕ

′(yj,k,` wj,k,`)√
β
∑
i,k,` f(λ`)2H2

j,k,`(θ)w
2
j,k,`

(40)

and the same approach as in section 2.3 can be followed to perform a fast computation to locate an exo-planet
within pixel accuracy:

θ̂ ≈ arg max
θ

∑
k

∑
j Sj(ζk(θ))bj,k√∑

k

∑
j Sj(ζk(θ))aj,k

, (41)

with:

aj,k =
∑
`

∑
j′

β f(λ`)
2 h2k,`(ξj′ − ξj)w2

j′,k,` =
∑
`

β f(λ`)
2 [(hk,` ⊗ hk,`)~ (wk,` ⊗wk,`)]j , (42)

bj,k =
∑
`

∑
j′

f(λ`)hk,`(ξj′ − ξj)wj′,k,` ϕ′(yj′,k,` wj′,k,`) =
∑
`

f(λ`)
[
hk,` ~

(
wk,` ⊗ ϕ′

(
yk,` ⊗wk,`

))]
j
. (43)

2.5 Detection with Speckle Removal

In practice, coronographic images are plagued by stellar leakage in the form of a pattern of speckles.1,2 As most
of these speckles are quasi-static, a simple way to get rid of them is to work on image differences9,11 possibly
after proper image registration to make the speckles coincident.12 In order to account for the speckles, the model
of the images must be modified as follows:

H0: y = Gx+ n , (44)

H1: y = Gx+H(θ) f + n , (45)

were Gx denotes the background signal due to the speckles which are linearly parameterized by x while H(θ) f is
the contribution of a planet at position θ and n the centered noise. For instance, assuming quasi-static speckles,
(Gx)j,k,` = xj,` where xj,` is the pattern of the speckles at the j-th pixel in the `-th spectral channel whatever



the exposure index k, hence Gj,k,`,j′,`′ = δj,j′ δ`,`′ . Note that we can impose some physical prior knowledge of the
speckle field through G, in particular the fact that Gx must be spatially band-limited. Using matrix notation,
the co-log-likelihood of the images now writes:

− log p(y |x, f, θ; H1) = (1/2) ‖y −Gx−H(θ) f‖2W + const. , (46)

and the criterion for the GLRT has to be rewritten as:

T 2
GLR(θ) = min

x
‖y −Gx‖2W −min

x,f
‖y −Gx−H(θ) f‖2W . (47)

Let us first consider the best background parameters x given f and θ under hypothesis H1 (it will be sufficient
to take f ≡ 0 to obtain the background parameters under H0):

x̂(f, θ) = arg min
x
‖y −Gx−H(θ) f‖2W =

(
GtW G

)−1
GtW

(
y −H(θ) f

)
, (48)

which, after some simple algebra, yields:

min
x
‖y −Gx−H(θ) f‖2W = ‖y −G x̂(f, θ)−H(θ) f‖2W

= ‖y −H(θ) f‖2Q , (49)

with:
Q = W −W P , (50)

and:
P = G

(
GtW G

)−1
GtW , (51)

which is a projection�. Considering Eq. (49), it turns out that removing the speckles in a maximum likelihood
sense amounts to processing the images y with a planet footprint H(θ) and modified statistical weights Q =
W −W P . At this point it is interesting to realize that:

y −G x̂(f, θ)−H(θ) f = y − P
(
y −H(θ) f

)
−H(θ) f

= r −K(θ) f ,

where K(θ) = (I − P )H(θ) and:
r = y − P y = y −G x̂H0

, (52)

are the residual images after subtracting the contribution of the speckles corresponding to the maximum likelihood
under hypothesis H0 (no planets): x̂H0

= x̂(f = 0, θ). Therefore:

min
x
‖y −Gx−H(θ) f‖2W = ‖r −K(θ) f‖2W , (53)

is another form of Eq. (49) which shows that it is also equivalent to process the residuals r assuming a planet
footprint given by K(θ) = (I − P )H(θ) and unchanged statistical weights W . Note that K(θ) is the projection
of the footprint H(θ) onto the orthogonal of the space spanned by projector P .

From Eq. (49) and Eq. (53), we deduce that:

min
x
‖y −Gx‖2W −min

x
‖y −Gx−H(θ) f‖2W = ‖y‖2Q − ‖y −H(θ) f‖2Q = 2 f tH(θ)tQy − f tH(θ)tQH(θ) f

= ‖r‖2W − ‖r −K(θ) f‖2W = 2 f tK(θ)tW r − f tK(θ)tW K(θ) f .

The two alternative expressions above take the same usual form:

min
x
‖y −Gx‖2W −min

x
‖y −Gx−H(θ) f‖2W = 2 b(θ)t f − f tA(θ) f , (54)

�which is easily found by checking that it is idempotent, i.e. that P 2 = P



with:

A(θ) = H(θ)tQH(θ) = K(θ)tW K(θ) , (55a)

b(θ) = H(θ)tQy = K(θ)tW r = H(θ)tW r , (55b)

where the above equalities follow from the identities:

Qy = W (y − P y) = W r , (56)

QH(θ) = W K(θ) , (57)

which result from the definitions of P in Eq. (51), of Q = W (I − P ) in Eq. (50) of K(θ) = (I − P )H(θ) and
from which it is easy to show that: P tW = W P = P tW P .

Maximizing the expression in Eq. (54) with respect to f yields the maximum likelihood estimator of the
planet SED knowing its position θ:

f̂(θ) = A(θ)−1 b(θ) ,

and the criterion for the GLRT becomes:

T 2
GLR(θ) = b(θ)tA(θ)−1 b(θ) .

These expressions are exactly the same as those obtained when there was no spurious background, cf. Eq. (27)
and (29), only the expressions of A(θ) and b(θ) have changed.

2.6 Fast Computations with Speckle Removal

We assume independent Gaussian noise, a shift-invariant PSF and, now, quasi-static speckles. The projection
operator P can be derived from observing that (whatever u of suitable size):

P u = G x̂(u) ,

with:
x̂(u) = arg min

x
‖u−Gx‖2W = arg min

x

∑
j,k,`

wj,k,` (uj,k,` − xj,`)2 .

Noting that the problem is separable in j and `, the solution is a trivial weighted average:

x̂j,`(u) =

∑
k wj,k,` uj,k,`∑

k wj,k,`
,

and [P u]j,k,` = [G x̂(u)]j,k,` = x̂j,`(u) whatever j, k and `. Hence computing the residuals r = y − P y poses no
problems:

rj,k,` = yj,k,` −
∑
k′ wj,k′,` yj,k′,`∑

k′ wj,k′,`
=
∑
k′

cj,k,k′,` yj,k′,` , (58)

with
cj,k,k′,` = δk,k′ −

wj,k′,`∑
k′′ wj,k′′,`

. (59)

Then taking the last expression in Eq. (55b), the right hand side term of the normal equations for the SED
writes:

b`(θ) =
∑
j,k

hk,`(ξj − ζk(θ))wj,k,` rj,k,` ≈
∑
k

∑
j

Sj(ζk(θ)) bj,k,` , (60)

which involves the interpolation at ζk(θ) of:

bj,k,` =
∑
j′

hk,`(ξj′ − ξj)wj′,k,` rj′,k,` = [hk,` ~ (wk,` ⊗ rk,`)]j , (61)



which is inexpensive to compute.

For the left hand side term of the normal equations for the SED, we use the first expression in Eq. (55a) to
write:

a`(θ) =
∑
j,k,k′

hk,`(ξj − ζk(θ))wj,k,` cj,k,k′,` hk′,`(ξj − ζk′(θ)) , (62)

which does not simplify without additional approximations. The most simple one consists in assuming that
cj,k,k′,` ≈ δk,k′ which is valid in the limit of a large number of exposures. Then:

a`(θ) ≈
∑
j,k

h2k,`(ξj − ζk(θ))wj,k,` ≈
∑
k

∑
j

Sj(ζk(θ)) aj,k,` , (63)

which involves the interpolation at ζk(θ) of:

aj,k,` =
∑
j′

h2k,`(ξj′ − ξj)wj′,k,` = [(hk,` ⊗ hk,`)~wk,`]j , (64)

which is inexpensive to compute.

3. SUMMARY AND PERSPECTIVES

We recalled the basics of signal detection and described how to derive a fast and robust detection criterion
based on a heavy tail model that can account for outliers in the residuals. We derived detectors that handle
jointly several wavelengths and exposures and focused on an approach that avoids interpolating the data, thereby
preserving the statistics of the original data. The next stage is to apply these methods to simulated and real
data.
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