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In this paper we derive an analytical model of a long-exposure star image for an adaptive-optics(AO)-corrected
coronagraphic imaging system. This expression accounts for static aberrations upstream and downstream of
the coronagraphic mask as well as turbulence residuals. It is based on the perfect coronagraph model. The
analytical model is validated by means of simulations using the design and parameters of the SPHERE in-
strument. The analytical model is also compared to a simulated four-quadrant phase-mask coronagraph. Then,
its sensitivity to a miscalibration of structure function and upstream static aberrations is studied, and the
impact on exoplanet detectability is quantified. Last, a first inversion method is presented for a simulation case
using a single monochromatic image with no reference. The obtained result shows a planet detectability in-
crease by two orders of magnitude with respect to the raw image. This analytical model presents numerous
potential applications in coronographic imaging, such as exoplanet direct detection, and circumstellar disk
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1. INTRODUCTION

The direct imaging of exoplanets is a challenging goal of
today’s astronomy. For instance, the photons emitted by
exoplanets carry information about the chemical composi-
tion of the planet’s atmosphere and may indicate the pos-
sibility of life on it. Nevertheless, the fact that planets are
often very close and very faint with respect to their parent
star makes their observation very difficult. This kind of
observation therefore requires the combination of ex-
treme AO (XAO) systems, coronagraphic devices, and so-
phisticated dedicated postprocessing methods [1,2]. The
XAO system allows a highly efficient correction of the
wavefront induced by atmospheric turbulence. This cor-
rection performs a concentration of both star and planet
photons and helps disentangling one from the other. The
coronagraphic stage allows the rejection of most of the
star signal and its associated photon noise. But still, the
combined use of these two devices is not sufficient. The
signal of the planet often remains hidden in the residual
photons coming from the star. A postprocessing method
must be derived in order to detect the planet in this re-
sidual image. If the image formation model is convolutive,
the image formation is fully described by the instrument’s
long-exposure point-spread function (PSF). In the case of
an AO system without coronagraph, imaging within the
isoplanatic patch is given by a convolution and the long-
exposure PSF is well described by the residual phase
structure function and by the static aberrations.
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The computation of long-exposure AO-corrected PSFs
with neither a coronagraph nor static aberrations is a
well-known issue addressed in several publications. First,
[3,4] studied PSF formation with averaged realistic AO
residuals. The residual structure function D, was intro-
duced, as well as the notion of stationarity. Later, [5-7]
provided fundamental bases for the understanding of the
intimate structure of high-Streh-ratio instantaneous
PSF's without a coronagraph. In particular, this work re-
vealed the central symmetry properties of high-Strehl-
ratio PSF speckle structures. The work presented in these
papers relies on a Taylor expansion of the PSF to the first
order for Bloemhoff, second order for Sivaramakrishnan,
and nth order for Perrin, relying on the hypothesis of
small aberrations. More recently, [8] developed the ex-
pression for the first-order coronagraphic PSF, but with-
out the long-exposure expression. We strive in this paper
to develop an expression with coronagraph, without the
small amplitude phase approximation, and that is valid
for a long exposure, thus for ground-based imaging. An of-
ten appropriate way to process images is then deconvolu-
tion. But coronagraphic imaging is precisely not a convo-
lutive process, as it induces a non-uniform transmission
in the focal plane. Conventional deconvolution is there-
fore not possible. Moreover, no parametric model of long-
exposure coronagraphic image formation is currently
available. Failing such a model, the methods currently
used to process coronagraphic images may be classified
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into two kinds. The first one consists in the numerical re-
moval of the residual star signal after coronagraphy by
differential imaging methods. This removal is done by
performing an angular [9-11] and/or spectral [12,13] im-
age subtraction. The subtraction needs at least two im-
ages, which leads to an increase of noise in the combined
image. This method is sensitive to the temporal evolution
of aberrations, or to the differential aberrations between
spectral channels. The second kind consists in the estima-
tion of both planet and star responses [14]. In this second
approach, the star estimation is non-parametric, i.e., it is
simply given by its pixel response in the whole field,
which means several tens of thousands of coefficients. The
latter coefficients are not useful for planet detection, and
are thus so-called nuisance parameters for the problem at
hand. In contrast, the planet, which is the only quantity
of interest, is parameterized by its position and flux, i.e.,
three coefficients. This is clearly suboptimal from a statis-
tical standpoint. We strive here to propose an analytical
expression of the long-exposure response of the instru-
ment for a point-like source. Such an expression will al-
low one to subtract the star signal numerically, therefore
with neither image subtraction nor non-parameteric star
response estimation. In Section2, the image formation is
studied. The analytical expression is obtained for the
short-exposure and the long-exposure cases. This section
introduces the notion of perfect coronagraph. In Section 3,
our analytical model is validated by a comparison to nu-
merical simulations with a perfect coronagraph, and with
a four-quadrant phase mask coronagraph (FQPM). In
Section 4, the case of a deconvolution-like algorithm is
studied: a coronagraphic image is restored by making use
of the star image model.

2. ANALYTICAL CORONAGRAPHIC STAR
IMAGE MODEL

In this section we derive the analytical short- and long-
exposure coronagraphic image model of a point-like
source. Because this model will be mostly useful for com-
puting the star image, we shall focus on an on-axis point-
source in the following. However, the following develop-
ments are valid whatever the point position may be. The
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model for a coronagraphic point source image will be
called “coronagraphic PSF”, which is of course field-
dependent.

A. Model Hypothesis
We introduce here the notations and formalism of the
whole paper, as well as the assumptions. The main optical
items are gathered on Fig. 1: the system components, the
optical aberrations, the turbulence residuals, and the
coronagraphic device.

The optical system is composed of a telescope, a corona-
graph, and a detector plane. The telescope pupil plane is
indexed by 0. The coronagraph mask plane is indexed by
1, with notation — and + for before and after the corona-
graphic mask. The pupil plane after the coronagraph is
indexed by 2, with notation — and + for before and after
the Lyot stop. The detector plane is indexed by 3. The
analytical response of this system is obtained by assum-
ing a propagation of the electromagnetic wave from the
telescope to the detector plane described by the Fraun-
hofer diffraction, i.e., by a Fourier transform between suc-
cessive planes. The field amplitudes in the pupil planes
are denoted V(p) and Wy(p), with p the pupil spatial vari-
able. The field amplitudes in the focal plane are denoted
Ai(a) and As(a@), with « the focal plane spatial variable,
i.e., an angle on the sky.

The aberrations in the system are separated into two
main contributions: the time-dependent ones, and the
static ones. All aberrations are assumed to be introduced
in a pupil plane, i.e., no Fresnel effect is considered here.

Time-dependent aberrations are due to atmospheric
turbulence. They are AO-corrected, and the residual aber-
rations are denoted ¢,(p,#). We consider ¢,(p,t) as a time-
dependent random phase in the entrance pupil plane. It is
assumed Gaussian centered, stationary (in particular, its
phase variance is uniform on the pupil), and ergodic with
respect to time. ¢, is generated in the telescope pupil
plane.

Static aberrations are introduced by optical defects or
misalignments. Among the static aberrations, we distin-
guish aberrations introduced upstream and downstream
of the coronagraphic mask. We denote the first ones by
¢.(p), and the latter ones by ¢4(p). We assume that these
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Fig. 1. (Color online) Optical scheme of a coronagraphic imager. The upstream and downstream static aberrations as well as the
adopted notations are ¢, and ¢, respectively. A;(a) denote focal plane complex amplitudes, while W;(p) denote pupil plane amplitudes.
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aberrations are introduced in a pupil plane: ¢, is intro-
duced in the telescope pupil plane 0, and ¢, is introduced
in the Lyot plane 2.

Moreover, the upstream aberration ¢, may include a
tip—tilt component to account for the star position w.r.t.
the optical axis, and in particular for a possible static mis-
alignment between the star and the coronagraph. The
model for an off-axis point source can be derived by add-
ing the corresponding tip—tilt in the static aberrations.

We define here the perfect coronagraph model through
its action on the incoming light wave. The notion of a per-
fect coronagraph has already been introduced by
[8,15,16]. The perfect coronagraph is always defined as an
optical device that subtracts a centered Airy pattern from
the electromagnetic field. This subtraction may be ana-
lytically expressed either in pupil or focal plane. Only the
weight of the subtracted Airy pattern, denoted by 7 in the
following, differs from one definition to another. The con-
nection between our definition of the perfect coronagraph
and that adopted in [15,8] is given in Appendix A.

The perfect coronagraph subtracts an Airy pattern from
the complex amplitude of the incoming field wave in a
proportion that minimizes the energy coming out from the
coronagraphic mask. We will introduce the corresponding
formalism in Subsection 2.B. As the perfect coronagraph
does not have a real focal plane extension, there is no
need for a Lyot stop in principle. Nevertheless, the down-
stream pupil is taken into account in the following for
comparison with the FQPM coronagraph.

B. Short-Exposure Analytical Model

We begin in this section by describing the complex ampli-
tudes in all planes of interest for a short exposure. The
goal of this first model is to describe the instantaneous
distribution of light in the detector focal plane. The com-
plex amplitude in the entrance pupil plane is given by

Vo(p,t) = Pylplel #0rud), gy

where P,(p) is the telescope pupil function.

The amplitude A; immediately before the corona-
graphic mask is given by the inverse Fourier transform
(FT) of the previous amplitude,

Ai(a,t) = FT N (Wy(p,1) = FT (P, (p)el e P11+ euleD) - (2)

where the inverse FT between the focal plane Aj(«,?) and
the pupil plane V(p,¢) is defined by the relation

Ajlayt) = j J Wo(p,t)e ¥ Pd%p. 3)

We choose the convention of inverse FT for describing
wave propagation from pupil to focal plane, and FT for
the converse. This choice simplifies forthcoming equations
as it allows the object to conserve its orientation in all fo-
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cal planes. It is nothing else than an arbitrary orientation
of axes in focal planes. As introduced in Subsection 2.A,
the action of the perfect coronagraph is to minimize the
energy coming out from the coronagraphic mask by sub-
tracting an Airy pattern’s amplitude FT-1(P,(p)). If we de-
note by 7 the weight of an Airy pattern’s amplitude sub-
tracted from the incoming wave, the corresponding focal
plane amplitude Aj(«,?) is then given by relation

Al(et) = Aj(at) = 7()FT(P,(p)). (4)

We denote by 7y the optimal value of 7 that minimizes the
outcoming energy:

o(t) = arg min| A7 (a,t) — n(&)FT (P, ()|, (5)
7(t)

and we define the perfect coronagraph by Eq. (4) with
7(t)=7y(t) given by Eq. (5).

The solution 7y(¢) of this least-squares minimization is
well known: it corresponds to the projection of the incom-
ing field A] on the Airy pattern. Using Parseval’s theo-
rem, this can be written in a pupil plane:

70(t) = (WVo(p,t)|Pu(p)), (6)

where (|) is the usual scalar product defined on functions
f and g of a 2D variable p:

1
<ﬂg>=§ f f f(Pgp)dp.
S

|70(t)|? is therefore the exact definition of the instanta-
neous Strehl ratio as defined by Born and Wolf [17]. For
an off-axis source, the Strehl ratio tends rapidly to zero.
The wave subtracted by the perfect coronagraph therefore
also tends to zero, which means that the outcoming wave
after the coronagraph A; tends toward A7: the farther the
source is from the optical axis, the smaller the action of
the coronagraph. The so-defined perfect coronagraph ac-
counts for the aberrations introduced upstream of the
coronagraphic mask. The weight of the subtracted Airy
pattern (7) accounts for the total amount of aberrations
upstream of the mask. An example of tilted PSF is shown
on Fig. 2, where we can see the shape of coronagraphic
PSF for a perfect coronagraph for different values of tip—
tilt upstream aberration from -1.6 to 1.6 rad.

We will keep in the following a circular uniform pupil,
but this simplified model of coronagraphic mask may eas-
ily account for a non-uniform pupil shape, as with central
obstruction, apodization, or spider arms. Our goal in this
paper is not to demonstrate a high extinction rate for a
realistic optical system, as many publications before did it
very well. Our goal is to demonstrate that our formalism
is able to describe simply the imaging by a realistic long-
exposure coronagraphic system.

Fig. 2. (Color online) Coronagraph response for a system comprising pure tip—tilt from —1.6 to 1.6 rad. Central PSF is completely ob-
scured as the perfect coronagraph presents an infinite extinction for a non-aberrant system.
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The amplitude W5(p,t) just before pupil plane 2 is given
by the FT of Aj(a,?):

V3(p,t) = FT(A}(a,t)) = &/ @pD+elP)p, (p) — 9o (t)P,(p).
(7

Plane 2 introduces the action of the Lyot stop and of the
static aberrations downstream of the Lyot stop. For the
sake of conciseness, we shall omit the spatial variables p
and « in the following, in order to alleviate reading. The
only remaining explicit variable is the time ¢. The ampli-
tude ;(¢) just after pupil plane 2 is then

W3(8) = W3 (8)Paeld = PyelerDeured — o (t)Pyel®d, (8)

with P, the pupil function of the Lyot stop and ¢, the ab-
errations downstream of the coronagraph. As the diam-
eter of Py is usually taken smaller than the diameter of
P, the product P,P; has been replaced by P; in Eq. (8).
The focal plane amplitude in the detector plane is then fi-
nally given by the inverse FT of ¥3:

As(t) = FTH(W5(2) = A, (0) = mo(0) A, @
with
‘An(t) . FT_l(Pdej(‘Pr(t)*'(Puhpd))’

Ay =FTY(Pe/#a), (10)

with A, the focal plane amplitude without coronagraphic
mask but with the Lyot stop and all the aberrations, and
A, the focal plane amplitude due to the sole static aber-
rations downstream of the coronagraph.

For the perfect coronagraph, and in the trivial case
where ¢,=¢,=0, we obtain 7y=1 even if ¢;# 0 by means
of Egs. (1) and (6), so the outgoing intensity is null. This is
consistent with the fact, well known by coronagraphic
system designers, that upstream aberrations are much
more critical than downstream ones for system perfor-
mance.

The instantaneous intensity distribution A3 in the de-
tector plane is given by the square modulus of Asj:

h(t) = Ag(t) A3(8) = [ A, (8) — 7o(8) Agl? = A, ()AL (2)
+ | (@) PALAY = 2R(75(8) A, (£) AY). (11)

The expression of h3(¢) comprises the cross product of fo-
cal plane amplitudes .4,(¢) and .Aj;. With this expression,
the action of the coronagraph can clearly be interpreted
as creating a wave in “phase opposition” w.r.t. A,, and the
resulting intensity in the focal plane is the interference
figure between these two waves. In Eq. (11), the purely
static term is A}j. All the other terms depend on the AO-
corrected wave front ¢,(t).

C. Long-Exposure Analytical Model

We now compute the long-exposure coronagraphic star
image h.. It is given by the expected value of the short ex-
posure (h3(¢)). In practice, this will be given by a time av-
erage of short exposures h3(¢). The aim of this computa-
tion is to express it as a function of statistical parameters
such as the structure function D, and pupil aberrations
@, and @4
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he = (hg(®)) = hy + (| 70(8) ) AgAG = 2R m0() AL () Ag),
(12)

with
2 (A (D) A1) (13)

The two first terms of Eq. (12) are easily identified. The
first term, A, is the long-exposure PSF without corona-
graph but using the Lyot stop. This PSF can be written as
the convolution of two terms, static OTF and turbulent
OTF, which can be written in Fourier space as

Ry = (Pgeluted @ Paelluted) . =12De, (14)

assuming in the remainder of the paper that the residual
phase is stationary [18]. The second term of Eq. (12),
(70®)[?).AgAS, is the mean PSF obtained with the sole
downstream aberrations, weighted by the mean Strehl ra-
tio during observation. The term {|7,(t)|?) can be rewrit-
ten as a function of the study parameters:

1
<‘770(t)|2> = STZ f f Pu(p)Pu(p,)

X (eUlerp)+e,p)=ile o’ ’”*“’”(”,))))dpdp'

1 L ,
- STZ f f pu(p)pu(p/)e—l/ZD‘pr(P -p)+j(e,(p)-e,(p")

Xdpdp', (15)

1
=§ f J (e V2Pex W )(p) ~P*(p')dp’, (16)

with D, (p’ - p) the residual phase structure function and
W, the static field in the pupil corresponding to static up-
stream aberrations ¢,:

W, =Pel%u. )

Assuming the stationarity of ¢,, the coefficient {|7y(t)*)
therefore depends only on statistical and deterministic
parameters, namely the residual phase structure function
and the upstream aberrations.

We now turn to the third term of Eq. (12), in order to
express it as a function of statistical quantities. In order
to obtain a useful expression for the term (7}(¢)4,(¢)), it is
mandatory to expand the two quantities 7, and A,. The
first one is the average of the incoming field on the pupil,
the second one is the FT of the field without coronagraph
on pupil Py

1 .
(na(t)An(a,t»:E fj’Pu(p)e—](sou(P)HDr(P,t))
P
xff pd(pf)e/‘(qu(p’,t)+<pu(p’)+qu(p’))
P,

X e‘zj“"”,dpdp’ . (18)
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Grouping the integrals together and leaving the deter-
ministic quantities outside of the expected value yields

1
(@) Anlat) = < f J f f (/P Do)
pp'

X P, (p)Ps(p")eTeulPleeulp)+edlp")
X e~%m' dpdp’ . (19)

The structure function of the residual phase is easily
identified as the first factor in this integral. Additionally

1
(it Aat) = f f Pd(ﬂ’)ef(*Du(”’>+‘Pd(P'))x{
.,

It is now possible to express the term (7(¢).A,(a,t)) with
respect to deterministic quantities such as the residual
phase structure function and the static aberrations:

1
(o)A, (@,t)) = §FT'1[‘I’ud(p) (ePPex ) (p)], (22)

with
W,4(p) = Py(p)e/ el +ede), (23)

Combining this last result with Eq. (12) finally yields
the following expression for the coronagraphic long-
exposure on-axis star image:

2
he=hy +|no(®)*Yhg~ EW{FT'l[‘I’ud X (e”V2Pe W) AG}

(24)

This expression gives the long-exposure light distribution
of the star observed with a perfect coronagraph. This ex-
pression takes into account upstream and downstream
aberrations, as well as residual turbulence and a Lyot
stop. This long-exposure description is the key point of
the coronagraphic imaging. To the best of our knowledge,
this is the first time that such an expression is obtained
with so few assumptions. We validate this model in Sec-
tion 3. This direct model for coronagraphic observation
should improve exoplanet detection, as it allows one to de-
velop dedicated coronagraphic image inversion methods,
an example of which is given in Section 4.

3. VALIDATION OF THE ANALYTICAL
MODEL BY SIMULATIONS

We validate in this section the analytical long-exposure
coronagraphic image model. The numerical simulation
conditions are given in Subsection 3.A. In Subsection 3.B
we compare our analytical model to a simulated one. The
simulation is performed by summing a large number of
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under the assumed stationarity of ¢.(¢), the structure
function does not depend on p and p’ but only on the dif-
ference p’—p and is written D, (p’'-p) [3,4]:

1
e A at) = f f f J e VPSPPI (p)Py(p)
p.p'

X e—jqou(p)ei(qou(p’)wd(p’))e—2jmp’dpdp' . (20)

We now gather all the terms depending on p under the
same integral; the convolution product x of the residual
turbulent OTF with amplitude ¥} («a) therefore appears:

-1/2D, (p'-p) —jeu(p) -2jmap’ 3
ffe ¢ P.ple dp |e dp'. (21)

p
_J

V2D xw)(p')

[

short-exposure simulated images of an on-axis point
source. In Subsection 3.C, we compare our analytical re-
sponse of a perfect coronagraph to that of a real corona-
graph, namely a FQPM coronagraph. We investigate in
Subsections 3.D and 3.E the sensitivity of the proposed
analytical model to an imperfect calibration of the observ-
ing parameters to be used in the computation of the ana-
lytic model.

A. Validation Conditions

We consider here point-like stars and companions ob-
served with a ground-based 8 m telescope equipped with
AO. The simulations take into account both the AO-
corrected turbulence and static aberrations. The baseline
AQ system considered is the high-performance AO system
SAx0 [19] of the SPHERE instrument [2]. We use a
Fourier-based simulation method that describes the AO
via the spatial power spectrum of the residual phase [20]
and is presented in [19]. The power spectral density
(PSD) of the residual phase after AO correction has al-
ready been used to design the SPHERE instrument [19].
The AO residual PSD includes servo-lag term, fitting
term, RON and photon noise, and spatially-filtered
Shack—Hartmann [21,22]. The simulation takes the fol-
lowing realistic set of parameters: a 41 X 41 subaperture
Shack—Hartmann, a 1.2 kHz sampling frequency, a guide
star of magnitude 8, a Kolmogorov turbulence, and a see-
ing of 0.8 arcsec at 0.5 um. It is to be noted that the pupil
considered in the following simulations is circular and
without any central obstruction. Such a pupil is certainly
too simple and unrealistic w.r.t. a real telescope system,
but our goal here is to validate an image formation model
with a simple system. Moreover we know that the effi-
ciency of the coronagraph will decrease with a real pupil
(i.e., with central occultation). In addition to the turbu-
lence residuals, we need to define a typical set of static ab-
errations in our simulations. Following the analysis per-
formed for the specification of the SPHERE instrument,
we consider a spatial spectrum of upstream aberrations
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Fig. 3. Static aberrations spectrum upstream of the corona-
graph mask. Low frequencies are assumed to be pre-
compensated down to a residual of 5 mm. The medium frequen-
cies follow a 1/f2 shaped spectrum, with an RMS value of 35 nm.
The total RMS value of the OPD of the upstream aberrations is
0,=35.3 nm.

that follows the shape shown in Fig. 3. The low frequen-
cies (up to 8 cycles per pupil) are assumed to be compen-
sated down to a residual wavefront error of 5 nm through
a careful calibration, e.g., by phase diversity [23]. The me-
dium frequencies from 8 to 20 cycles per pupil (the AO
cut-off frequency) present a total standard deviation of
35 nm. The total RMS optical path difference (OPD) error
of the upstream wavefront is thus 0, =35.3 nm. No spatial
frequency for static aberrations above 20 cycles per pupil
is considered here. Of course this choice is unrealistic as
we know that realistic systems present some aberrations
at those spatial frequencies. But the impact of static ab-
errations is negligible compared to residual turbulence
outside the AO halo. Moreover, the choice of -2 is rather
pessimistic, as the M mirror of the Very Large Telescope
(VLT) presents a 3 PSD (real measurement). Down-
stream static aberrations are randomly generated accord-
ing to a /2 spectrum, f being the spatial frequency in the

Typical coronagraphic profile
—
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pupil, with a total RMS OPD error of 100 nm. Images are
computed at a wavelength A\=1.6 um and are Shannon-
sampled. The static aberrations are assumed to be cali-
brated, but not compensated. The SPHERE instrument is
planned to combine images obtained simultaneously at
different wavelengths on different imaging paths. Even if
the AO loop could compensate for static aberrations on
one path, differential static aberrations would be present
on the other path, and calibrated.

In Fig. 4, we present the typical profiles of long-
exposure star images with and without coronagraph for
the conditions considered in this paper. The circularly av-
eraged intensity profiles are plotted with respect to field
of view, and the intensity is normalized to the incoming
total intensity in the entrance pupil. In other words, the
integral of h, (Eq. (13), PSF without coronagraph) is 1.
The value of &, at the origin of Fig. 4 is thus proportional
to the Strehl ratio. The proportionality factor is 0.14 if the
PSF is centered between 4 pixels and 0.20 if the PSF is
centered on one pixel. The focal plane area located be-
tween 0 and 20\/D is the PSF area cleaned by the AO cor-
rection, while the area beyond 20\/D is corrugated by the
residual halo due to the uncorrected high spatial frequen-
cies of the turbulence. Here SR=87%. We observe the
huge gain brought by the coronagraph for angular sepa-
rations lower than 20N/D. We also plot the level of the
maximum intensity of a planet of contrast 2.10% This
level depends on how the planet is centered w.r.t. the pixel
grid. The two horizontal dashed—dotted lines represent
the best and worst cases (planet at center of pixel and be-
tween 4 pixels, respectively). The upstream aberration-
induced speckles are the principal contributor to the star
residual between 8 and 20A/D. The AO residuals are
dominant below 8\/D and beyond 20\/D. With a wave-
front error of 35 nm, it is not possible (or only marginally)
to detect a planet of contrast 2.10* between 0 and 20\/D
from a single image.

107°E
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e
R
>3 Eo_ T
‘n.£ r
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oy L
IS
10°°
F Profile with coronagraph
L Profile without coronagraph
1077

| L’\HH‘
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Angular separation [A/D]

Fig. 4. Profiles of long-exposure star images with and without coronagraph for the conditions given in Subsection , including AO re-
siduals (SPHERE case), upstream and downstream aberrations, perfect coronagraph, at wavelength A=1.6 um. Profiles normalized to 1
photon in the entrance pupil. Horizontal dotted—dashed lines: maximum intensity for a planet of contrast 2.10* (centered on 1 pixel and
between 4 pixels). Vertical dotted—dashed line: cutoff of the AO correction (20\/D).
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Fig. 5. (Color online) (Left) Analytical model, (center) simulated coronagraphic PSF with N=1000 turbulence realizations, and (right)
absolute value of difference in log-scale and same dynamic. The image formation includes residual turbulence and static aberrations. The

conditions of simulation are the ones explained in Subsection 3.A.

B. Long-Exposure Analytical Model versus Sum of
Short-Exposure Images

The validation of the long-exposure image model has been
performed by comparing Eq. (24) for ~, with an empirical
long-exposure PSF. The latter is obtained by summing N
short-exposure coronagraphic PSF’s A3(¢, ;). Each short-
exposure coronagraphic PSF is numerically simulated
with an independent realization of a residual turbulence
phase screen ¢, following the Fourier approach, the ad-
dition of the upstream aberrations—the propagation of
the light field by Fourier transform taking into account
the stops and masks presented in Fig. 1—a perfect coro-
nagraph, and the downstream aberrations, as explained
in Subsection 2.B [Eq. (11)]. The expression for the em-
pirical long-exposure PSF is therefore

1 N
(ha)y = ]—VE Rs(@r)- (25)
k=1

In order to compare PSF generated with different con-
ditions, we introduce here the notion of circularly aver-
aged error profile. This profile is defined as follows:

1 2
ela)= \/2_f (he(a,0) = (ha)n(a, 0)*d6,  (26)
™o

with (a, 6) the polar coordinate variables, A, being by in-
stance the coronagraphic PSF computed analytically, and
(h3)n being the simulated one, with summation of N short
exposures. This error term is relevant to compare the
shape of two PSFs with respect to angular separation.
This does give only a very rough idea of detectability
reachable with the model, as it shows the average RMS
residual after subtracting the model image from the simu-
lated one.

The results of Fig. 5 show the numerical empirical and
analytical coronagraphic images of a centered star and
the error term as defined previously in log-scale and the
same dynamic range. The analytical model shows a very
good matching of the global structure of the response: the
residuals are mostly situated on the most luminous part
(AO halo and on-axis residual). These residuals are
mainly due to the finite exposure time of the empirical
long exposure. We plot in Fig. 6 the circularly averaged
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Fig. 6. Circularly averaged profiles of error between the analytical model and the simulated star image. The profiles are plotted for
different cases of long-exposure convergence. The image formation includes residual turbulence and static aberrations. The simulation

conditions are explained in Subsection 3.A.
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Fig. 7. (Color online) (Left) Analytical model , (center left) FQPM coronagraphic PSF simulated, (center right) absolute value of differ-
ence, and (right) the same without accounting for the biquadrants points (log-scale, same dynamic). The image formation includes re-
sidual turbulence and static aberrations. The conditions of simulation are the ones explained in Subsection 3.A.

analytical intensity profile and error profiles for the em-
pirical long-exposure PSF. The profiles are normalized by
the total number of photons in the entrance pupil. We ob-
serve, as expected, that the error decreases as the number
of short-exposure images increases, with a decrease by a
factor |10 for an increase of the number of short expo-
sures by a factor of 10. A summation of 1000 independent
short exposures corresponds to a typical observing time of
10 to 100 s, which is realistic. These simulation results
validate the model, which describes correctly the struc-
ture of the long-exposure coronagraphic PSF for a perfect
coronagraph.

C. Perfect Coronagraph Model versus FQPM
Coronagraph

One of the coronagraphs that will be implemented on
SPHERE is a FQPM [24]. This coronagraph is based on
the principle of an original mask design, a four-quadrant
binary phase mask. The mutually destructive interfer-
ences of the coherent light from the main source produce
a very efficient nulling, which is theoretically able to com-
pletely cancel the incoming light in the case of a mono-
chromatic, perfectly manufactured mask, an aberration-
free wave, and in the absence of a central obstruction in
the telescope.

In order to validate our long-exposure analytical model
with respect to more realistic coronagraphs, we have com-
pared it to the empirical long-exposure coronagraphic im-
age obtained with a FQPM coronagraph. For this simula-
tion, the perfect coronagraph has been replaced by a
FPQM. Figure 7 shows the on-axis star response of such a
coronagraph compared to our analytical model. Except for
the field positions situated on the X and Y axes, the dif-
ference between the two coronagraphic images is very
small at any position. Figure 8 shows the error profile be-
tween the analytical model and the simulated FQPM
coronagraph after removal of points around the X and Y
axes. The relative difference ranges between 3% and 8%
for any field position a>2\/D and is only slightly larger
than the convergence error of Fig. 6 for 1000 exposures.
Therefore, our model, although derived for a perfect coro-
nagraph, is appropriate to process data obtained with a
FQPM coronagraph.

D. Miscalibration of the Structure Function

We first study the influence of a miscalibration of the
structure function D, . The test performed by simulation
is as follows:
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Fig. 8. Circularly averaged profiles of error between the analytical model and the simulated star image with FPQM coronagraph. The
image formation includes residual turbulence and static aberrations. The simulation conditions are explained in Subsection 3.A.
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e computation of long-exposure coronagraphic star im-
age h. using our model with the true D, (conditions given
in Subsection 3.A);

e computation of long exposure coronagraphic star im-

age fzc using our model but with miscalibrated D%, de-
noted ﬁw where

D,=pD,,

with 8=0.8 to 0.95, corresponding for instance to a poor
estimation of the seeing conditions. This is a rough way to
introduce miscalibration, as a modification of turbulence
conditions would result in more complexity;

e computation of the differential image A A:hc—fzc.

We present in Fig. 9 the impact of the miscalibration of
D, on the differential image &,. Circularly averaged pro-
ﬁles are plotted for 8=0.8, 0.9, and 0.95. The profile of A,

is also plotted as reference. For 8=0.9, subtracting hc in-
stead of i, from an image would still bring a substantial
attenuation of the residual star light, typically a factor of
the order of 10. This shows that such an error in the cali-
bration of D, will not dramatically jeopardize the detec-
tion of planets of contrast lower than 105. But to achieve
higher contrast, the requirement on the quality of the
calibration is more stringent.

E. Miscalibration of the Upstream Static Aberrations
Second, we study the influence of the miscalibration of the
static aberrations. Concerning the downstream static ab-
errations, we found a negligible impact of their miscali-
bration on the image difference. Indeed, these aberrations
have a very weak contribution to the image formation in a
coronagraphic instrument, as already pointed out in [8].
The only aberrations studied herein are the ones intro-
duced upstream of the coronagraphic mask, ¢,. The test
performed by simulation is as follows:
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e computation of long-exposure coronagraphic star im-
age h, using our model with the true ¢, (conditions given
in Subsection 3.A);

e computation of long-exposure coronagraphic star im-

age ﬁc using our model but with miscalibrated ¢,, denoted
¢, where

¢=(1+8)'(Pu’

with e chosen positive or negative in a way that the error
on ¢, ranges from 0.00 to 0.20;

e computation of the differential image A A:hc—fzc.

We compute the profiles of the differential images A,
for different RMS wavefront errors for ¢: £=0.05 to 0.30. In
Fig. 10, the profiles are plotted with respect to angular
separation. The major impact of the miscalibration of the
upstream aberrations is inside the AO halo. A calibration
error of the order of 10 nm (£=0.20) for ¢ with respect to
¢, significantly limits the detectability of a planet be-
tween 8 and 20\/D, which corresponds to the spatial fre-
quency range of the dominant upstream aberrations of
our simulations. To obtain an attenuation of a factor 10 of
the residual star light after subtraction, the error be-
tween ¢ and ¢, must be smaller than or equal to 3.5 nm
(¢=0.10). This is a demanding requirement for the cali-
bration of ¢,, but it seems achievable with optimized and
accurate techniques [23]. It allows one to detect planets of
contrast 2.10% To detect at higher contrasts requires re-
ducing the amplitude of the upstream aberrations, using
several wavelengths (spectral differential imaging or in-
tegral field spectrographs), and/or using field rotation to
disentangle speckles from planets [9,11].

An effectiveness comparison can be done here for the
computation of coronagraphic PSF. On the one hand, our
model is costless in term of numerical computation, com-
pared to the simulation of 1000 empirical PSFs. More-
over, the computation given by our model is exact, and
does not suffer from convergence errors. On the other
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Fig. 9. Profiles of the difference &, for different error levels on the miscalibration of the structure function. Dotted curve, 8=0.8. Dashed
curve, B=0.9. Dotted—dashed curve, 8=0.95. Continuous curve, profile of /.. For lines and conditions see caption of Fig. 4.
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hand, the simple coronagraph model used in our PSF
computation does not allow one to describe correctly the
residual very close to the optical axis after a realistic coro-
nagraph. The impact of such model errors very close to
the optical axis is actually modest because planets will be
searched for farther away from the axis. We will see in
Section 4 another feature of a simple image formation
model: this capability may be very useful in the case of an
inversion model, where the observed object or the system
parameters will have to be estimated.

We have seen that the subtraction of the analytical
model allows one to gain in detectability. The next section
will show a more optimized inversion process that in par-
ticular incorporates the estimation of the star flux.

4. TOWARD PLANET DETECTION: USE OF
THE ANALYTICAL MODEL IN AN
INVERSION METHOD

This analytical model has been implemented into an in-
version method described below. First, we develop a sim-
plified direct model of image formation in a coronagraphic
case. Then we describe the planet estimation assuming
that the upstream and downstream aberrations and the
phase structure function have been calibrated prior to the
deconvolution.

A. Two-PSF Model and Image Formation

The exact computation of an observed scene through a
coronagraphic instrument requires knowledge of the
field-dependent PSF h(a,a’) in the whole field, where o’
is the position of a point source and « the current position
in the image. Although we have just derived such an ex-
pression, the manipulation of such massive data may be
computationally expensive. However in the framework of
exoplanet detection, the observed scene is composed of
one bright on-axis point-like source, the star, and a pos-
sible weak off-axis environment. In the simple case of a
Lyot coronagraph, for instance, the light coming from a

source at position o’ away from the optical axis is only
slightly affected by the focal mask: the PSF h(«,a’') away
from the axis is very close to the PSF 4,(a) of Eq. (13)
without a coronagraphic mask. Close to the optical axis,
on the contrary, the structure of the PSF is strongly per-
turbated by the presence of the coronagraphic mask. The
study of Malbet [25] shows that the PSF may be approxi-
mated by A, («a) outside a small transition zone A\/D wide
around the focal mask. For the perfect coronagraph

ha,a') =h,(a- a') for |a'| > ND. (27)

Therefore a simplified model of the image formation is
chosen in the following and accounts for two PSF’s: one
on-axis h, for the star following the model developed in
Section 2 and one off-axis &, without coronagraphic mask
for the faint environment. This approach is valid for any
off-axis environment, be it an extended scene or one or
more point-like sources.

As a consequence, we will decompose the astrophysical
target into two parts: the star itself, whose light is par-
tially rejected by the coronagraph, and its environment,
called hereafter the object and denoted by o(a), which is
the object of interest, the observed scene without the star
signal. Let us denote by i the recorded, discrete image,
where the boldface recalls that it is a vector concatenating
all pixels. Similarly, let us denote by o, h., h, the dis-
cretized versions of functions o(«), h (@), h, (). The image
formation of the star and its environment may then be re-
written as

i=F,-h,+h,*o, (28)
where F stands for the star flux in the pupil before the
coronagraph and x for the convolution product. We con-
sider that the object is a 2D map of intensity o to be esti-
mated and not a set of Dirac functions whose amplitude
and position are unknown. We recall that h. can be com-
puted from Eq. (24) based on the calibrations of the struc-
ture function of the turbulent phase and the upstream
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and downstream pupil static aberrations. In the follow-
ing, we assume that these calibrations are available but
imperfect by 5%, which means an error of 1.75 nm RMS
for ¢, calibration, and an error of 11 nm on D, calibra-
tion. Hence, the parameters to be estimated in Eq. (28)
are the object o and the star flux F,

B. Joint Estimation of Star Flux and Object

As in differential imaging [26], we would like to calibrate
the residual star light Foh, and subtract it from the im-
age in order to retrieve the star’s faint environment. We
propose here to jointly fit the star flux F; and estimate the
unknown object 0. The joint estimation is done by mini-
mizing a global MAP criterion 7 [Equation (29)] with re-
spect to the unknowns ¥ and o:

(i-Fo-h,) - (hyro) ||®

)

J(Fy,0) = +Jp,(Fo) + To(0),

(29)

where 0_2b is the noise variance (depending on pixel posi-
tion), and JFO(FO) and J,(0) are the regularization terms
incorporating a priori knowledge of parameters to esti-
mate.

In practice, this minimization is done by alternating
the estimation of these two parameters F, and o, i.e., by
minimizing the criterion alternately with respect to each
of the unknowns, considering that the other one is fixed.
As the criterion is quadratic with F, the solution of the
star flux for the current estimate of the object is given by
the analytical expression

> (i-hy*o) - he(a)/oi(a)

Fy(0) = — ) (30)
> h(a)oi(a)

For the first iteration, o is set to zero.

Then for the current estimation of Fj, minimization of
Eq. (29) is equivalent to a classical minimization of the
following maximum «a priori (MAP) criterion:

Vol. 27, No. 11/November 2010/J. Opt. Soc. Am. A A167

iy(Fo) - hy#o||”

J(0,Fg) = + Jo(0) + constant (31)

0y
where the differential image i A(IA"O) is defined as
iy(Fo)=i-Fy he.

Jo(0) is for instance a quadratic Wiener-type regulariza-
tion [27] based on a parametric model of the PSD of the
object. We use the MISTRAL code [28] to minimize Eq.
(81) and estimate the object under the positivity con-
straint. As in ([29], Appendix A), all hyperparameters
(noise variance and object PSD) are estimated in an un-
supervised fashion prior to deconvolution by maximum
likelihood. At convergence, i, contains our best estimate
of the star-subtracted image of the object. In practice, for
an object much fainter than the central star, one global it-
eration, i.e., one F estimation followed by one o estima-
tion, is enough.

In Figs. 11 and 12, we present an example of the pro-
posed method to estimate planets in the environment of a
star from a long-exposure AO-corrected coronagraphic im-
age. The conditions are the ones given in Subsection 3.A.
In the image on the left in Fig. 11, we observe the simu-
lated empirical long-exposure coronagraphic image in-
cluding photon noise, for F=101° photons. This flux cor-
responds to a GO-type star of H magnitude 8 and an
exposure time of 100 sec with a global throughput of 13%
for such an instrument [2]. The detector electronic noise
is assumed to be negligible. Center image is i, after sub-
traction of the star response at the first iteration. Here,
h, is computed considering imperfect calibrations of the
structure function D, ($=0.95) and of the upstream ab-
errations ¢, (¢=0.05) corresponding to a RMS wavefront
error of 1.75 nm compared to the true aberrations. These
conditions are quite conservative in view of the capability
of the techniques for turbulence and aberration calibra-
tions to be implemented in SPHERE [23,30]. The compan-
ion of contrast 2.10* is barely discernible but still con-
volved by the PSF. The image on the right shows the
result of object map o after deconvolution. We define the

Fig. 11. (Color online) (Left) Simulated empirical long-exposure coronagraphic star image with a companion of contrast 2.10* and sepa-
ration 14\/D, sum of 1000 short exposures, star photon flux F;=10'°, perfect coronagraph; (center) differential image i, of the star en-

vironment after subtraction of the star response FO -h, computed with miscalibrated D, (8=0.95) and ¢, (¢=0.05); (right) object map
after MAP deconvolution. Images are in linear scale, the star residual is saturated, only the AO-corrected area is shown, up to 20\/D. For

the detailed simulation conditions see Subsection 3.A.
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SNR of the companion as the ratio of the estimated maxi-
mum flux of the companion in the considered plane (raw
image, difference image, and deconvolved object) over the
RMS value of background signal taken in a crown situ-
ated at the expected companion’s radius. The maximum
flux of the companion is estimated as the maximum mea-
sured intensity around the expected companion position,
minus the average value of intensity estimated in the
same crown.

In the raw image (left), the companion’s SNR is esti-
mated to be slightly less than 1. In the difference image
(center), the SNR is of the order of 25. In the object 2D
map after MAP deconvolution (right), the SNR is more
than 100, which is a significant enhancement. The gain is
a factor of more than 4, as expected, corresponding
roughly to the mean number of pixels in the core of the
PSF. The gain compared to the raw image is of two orders
of magnitude. We have shown here a simple inversion
method using the coronagraphic image formation model.
This method uses the coronagraphic image formation
model in order to estimate the star flux and the observed
object, assuming the system parameters are quite well
known. In the more realistic case where the system pa-
rameters are unknown, or miscalibrated, this model
should be of prime help for developing a focal-plane coro-
nagraphic wave-front sensor or a structure function esti-
mator [31]. This kind of estimation requires the use of a
criterion minimization, which implies the computation of
the image formation model typically a few hundreds,
which can definitely not be done with a summation of
1000 empirical PSF's. Of course the estimation of more pa-
rameters than star flux and the object intensity requires
additional information. This additional information is
given by more images differing by a known diversity, as
an introduced calibrated aberration, or images recorded
at several wavelengths. A more sophisticated algorithm
has therefore to be developed, able to deal with numerous
images and to estimate the aberrations as well as the re-
sidual structure function and the observed object. For in-
stance, this model will be of prime help in dealing with
the hyperspectral image cubes that will be acquired on
SPHERE Integral Field Spectrograph. The diversity in-
troduced by wavelength range should help in disentan-
gling static aberrations, residual turbulence structure
function, coronagraph action, and the exoplanet faint flux.
This focal-plane post-coronagraphic method has been
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pointed out by [32] as one of the most attractive, as it is
directly sensitive to aberration perturbations in the focal
plane. Note that as our coronagraphic image formation
model is not accurate very close to the optical axis com-
pared to a realistic coronagraphic mask, we can guess
that wave-front sensing of low-order aberrations might be
biased, as mentioned by [33].

5. CONCLUSION

We have developed and validated an analytical model for
coronagraphic imaging through AO-corrected turbulence.
This analytical model accounts for the major parameters
of imaging through turbulence: the structure function of
the residual turbulent phase, as well as upstream and
downstream static aberrations. This analytical model can
be used to compute and simulate long-exposure corona-
graphic images very efficiently without the need for the
computer-intensive simulation of numerous short expo-
sures. It can also be used as a data model in inversion
procedures such as image restoration or planet detection
methods.

With realistic miscalibrations of ¢, and D, we have
shown that subtracting the analytical model from the im-
age brings roughly a factor of 10 attenuation in the re-
sidual coronagraphic image, which itself brings about the
same attenuation w.r.t. the non-coronagraphic image.

The analytical model has been implemented in a first
inversion method based on a Bayesian approach, where
the star flux and the observed object are jointly estimated.

For a planet contrast of 2.10* and SPHERE conditions,
this inversion method showed a SNR increase from a
value of 3 in the raw image up to 30 in the image differ-
ence iy, and up to 160 in the restoration.

Short-term future work includes the validation of this
model on laboratory coronagraphic data. Work in progress
not presented in this paper suggests that this model can
be used as an essential build-in bloc of a coronagraphic
phase diversity wavefront sensor.

Long-term future work includes the development of a
global processing method allowing one to use this model
image, e.g., in contexts such as angular differential imag-
ing, dual band imaging, or IFS imaging. This global pro-
cessing method will allow one to estimate observed object
intensity as well as system parameters.

APPENDIX A: CONNECTION WITH OTHER
DEFINITIONS OF PERFECT
CORONAGRAPH

In order to establish the connection between our adopted
definition of the perfect coronagraph [15,8], let us in this
appendix briefly consider the case of a long exposure, and
assume that:

e ¢,(p,t) is considered a zero-mean random spatial
field,

* ¢.(p,t) and ¢,(p,t) are ergodic with respect to space
(i.e., there is an equivalence between expected value and
spatial integration),
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e the surface S of the pupil is wide enough to guaran-
tee that spatial statistics on the aperture are well
estimated,

then it is easy to show using Egs. (1) and (6), that 7,(¢)
defined as Eq. (5) does not depend on time and that one
can identify the expected value (|7,(¢)|?) with the coherent
energy E,., defined as

E,=e s wia, (A1)
with o'}% being the spatial variance of function fin the pu-
pil defined as

oF = é f L (fg(p)— (éj Lf(p’)dzp’)>2dzp,

which does not depend on time with the above assump-
tions. In [15,8], the perfect coronagraph was defined as
subtracting an Airy pattern weighted by JE,. From the
above we can see that such a definition is valid only in a
long-exposure case with an ergodicity assumption and an
infinite pupil size. On the other hand, the definition of Eq.
(6), which is the instantaneous SR and is used in the pa-
per, makes sense whatever the phase statistics may be.
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