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Analytical expression of long-exposure
adaptive-optics-corrected coronagraphic image.

First application to exoplanet detection
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In this paper we derive an analytical model of a long-exposure star image for an adaptive-optics(AO)-corrected
coronagraphic imaging system. This expression accounts for static aberrations upstream and downstream of
the coronagraphic mask as well as turbulence residuals. It is based on the perfect coronagraph model. The
analytical model is validated by means of simulations using the design and parameters of the SPHERE in-
strument. The analytical model is also compared to a simulated four-quadrant phase-mask coronagraph. Then,
its sensitivity to a miscalibration of structure function and upstream static aberrations is studied, and the
impact on exoplanet detectability is quantified. Last, a first inversion method is presented for a simulation case
using a single monochromatic image with no reference. The obtained result shows a planet detectability in-
crease by two orders of magnitude with respect to the raw image. This analytical model presents numerous
potential applications in coronographic imaging, such as exoplanet direct detection, and circumstellar disk
observation. © 2010 Optical Society of America
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. INTRODUCTION
he direct imaging of exoplanets is a challenging goal of
oday’s astronomy. For instance, the photons emitted by
xoplanets carry information about the chemical composi-
ion of the planet’s atmosphere and may indicate the pos-
ibility of life on it. Nevertheless, the fact that planets are
ften very close and very faint with respect to their parent
tar makes their observation very difficult. This kind of
bservation therefore requires the combination of ex-
reme AO (XAO) systems, coronagraphic devices, and so-
histicated dedicated postprocessing methods [1,2]. The
AO system allows a highly efficient correction of the
avefront induced by atmospheric turbulence. This cor-

ection performs a concentration of both star and planet
hotons and helps disentangling one from the other. The
oronagraphic stage allows the rejection of most of the
tar signal and its associated photon noise. But still, the
ombined use of these two devices is not sufficient. The
ignal of the planet often remains hidden in the residual
hotons coming from the star. A postprocessing method
ust be derived in order to detect the planet in this re-

idual image. If the image formation model is convolutive,
he image formation is fully described by the instrument’s
ong-exposure point-spread function (PSF). In the case of
n AO system without coronagraph, imaging within the
soplanatic patch is given by a convolution and the long-
xposure PSF is well described by the residual phase
tructure function and by the static aberrations.
1084-7529/10/11A157-14/$15.00 © 2
The computation of long-exposure AO-corrected PSFs
ith neither a coronagraph nor static aberrations is a
ell-known issue addressed in several publications. First,

3,4] studied PSF formation with averaged realistic AO
esiduals. The residual structure function D� was intro-
uced, as well as the notion of stationarity. Later, [5–7]
rovided fundamental bases for the understanding of the
ntimate structure of high-Streh-ratio instantaneous
SFs without a coronagraph. In particular, this work re-
ealed the central symmetry properties of high-Strehl-
atio PSF speckle structures. The work presented in these
apers relies on a Taylor expansion of the PSF to the first
rder for Bloemhoff, second order for Sivaramakrishnan,
nd nth order for Perrin, relying on the hypothesis of
mall aberrations. More recently, [8] developed the ex-
ression for the first-order coronagraphic PSF, but with-
ut the long-exposure expression. We strive in this paper
o develop an expression with coronagraph, without the
mall amplitude phase approximation, and that is valid
or a long exposure, thus for ground-based imaging. An of-
en appropriate way to process images is then deconvolu-
ion. But coronagraphic imaging is precisely not a convo-
utive process, as it induces a non-uniform transmission
n the focal plane. Conventional deconvolution is there-
ore not possible. Moreover, no parametric model of long-
xposure coronagraphic image formation is currently
vailable. Failing such a model, the methods currently
sed to process coronagraphic images may be classified
010 Optical Society of America
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nto two kinds. The first one consists in the numerical re-
oval of the residual star signal after coronagraphy by

ifferential imaging methods. This removal is done by
erforming an angular [9–11] and/or spectral [12,13] im-
ge subtraction. The subtraction needs at least two im-
ges, which leads to an increase of noise in the combined
mage. This method is sensitive to the temporal evolution
f aberrations, or to the differential aberrations between
pectral channels. The second kind consists in the estima-
ion of both planet and star responses [14]. In this second
pproach, the star estimation is non-parametric, i.e., it is
imply given by its pixel response in the whole field,
hich means several tens of thousands of coefficients. The

atter coefficients are not useful for planet detection, and
re thus so-called nuisance parameters for the problem at
and. In contrast, the planet, which is the only quantity
f interest, is parameterized by its position and flux, i.e.,
hree coefficients. This is clearly suboptimal from a statis-
ical standpoint. We strive here to propose an analytical
xpression of the long-exposure response of the instru-
ent for a point-like source. Such an expression will al-

ow one to subtract the star signal numerically, therefore
ith neither image subtraction nor non-parameteric star

esponse estimation. In Section2, the image formation is
tudied. The analytical expression is obtained for the
hort-exposure and the long-exposure cases. This section
ntroduces the notion of perfect coronagraph. In Section 3,
ur analytical model is validated by a comparison to nu-
erical simulations with a perfect coronagraph, and with
four-quadrant phase mask coronagraph (FQPM). In

ection 4, the case of a deconvolution-like algorithm is
tudied: a coronagraphic image is restored by making use
f the star image model.

. ANALYTICAL CORONAGRAPHIC STAR
MAGE MODEL
n this section we derive the analytical short- and long-
xposure coronagraphic image model of a point-like
ource. Because this model will be mostly useful for com-
uting the star image, we shall focus on an on-axis point-
ource in the following. However, the following develop-
ents are valid whatever the point position may be. The

ig. 1. (Color online) Optical scheme of a coronagraphic imag
dopted notations are � and � respectively. A ��� denote focal
u d i
odel for a coronagraphic point source image will be
alled “coronagraphic PSF”, which is of course field-
ependent.

. Model Hypothesis
e introduce here the notations and formalism of the
hole paper, as well as the assumptions. The main optical

tems are gathered on Fig. 1: the system components, the
ptical aberrations, the turbulence residuals, and the
oronagraphic device.

The optical system is composed of a telescope, a corona-
raph, and a detector plane. The telescope pupil plane is
ndexed by 0. The coronagraph mask plane is indexed by
, with notation � and � for before and after the corona-
raphic mask. The pupil plane after the coronagraph is
ndexed by 2, with notation � and � for before and after
he Lyot stop. The detector plane is indexed by 3. The
nalytical response of this system is obtained by assum-
ng a propagation of the electromagnetic wave from the
elescope to the detector plane described by the Fraun-
ofer diffraction, i.e., by a Fourier transform between suc-
essive planes. The field amplitudes in the pupil planes
re denoted �0��� and �2���, with � the pupil spatial vari-
ble. The field amplitudes in the focal plane are denoted
1��� and A3���, with � the focal plane spatial variable,

.e., an angle on the sky.
The aberrations in the system are separated into two
ain contributions: the time-dependent ones, and the

tatic ones. All aberrations are assumed to be introduced
n a pupil plane, i.e., no Fresnel effect is considered here.

Time-dependent aberrations are due to atmospheric
urbulence. They are AO-corrected, and the residual aber-
ations are denoted �r�� , t�. We consider �r�� , t� as a time-
ependent random phase in the entrance pupil plane. It is
ssumed Gaussian centered, stationary (in particular, its
hase variance is uniform on the pupil), and ergodic with
espect to time. �r is generated in the telescope pupil
lane.
Static aberrations are introduced by optical defects or
isalignments. Among the static aberrations, we distin-

uish aberrations introduced upstream and downstream
f the coronagraphic mask. We denote the first ones by
u���, and the latter ones by �d���. We assume that these

e upstream and downstream static aberrations as well as the
omplex amplitudes, while � ��� denote pupil plane amplitudes.
er. Th
plane c
 i
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berrations are introduced in a pupil plane: �u is intro-
uced in the telescope pupil plane 0, and �d is introduced
n the Lyot plane 2.

Moreover, the upstream aberration �u may include a
ip–tilt component to account for the star position w.r.t.
he optical axis, and in particular for a possible static mis-
lignment between the star and the coronagraph. The
odel for an off-axis point source can be derived by add-

ng the corresponding tip–tilt in the static aberrations.
We define here the perfect coronagraph model through

ts action on the incoming light wave. The notion of a per-
ect coronagraph has already been introduced by
8,15,16]. The perfect coronagraph is always defined as an
ptical device that subtracts a centered Airy pattern from
he electromagnetic field. This subtraction may be ana-
ytically expressed either in pupil or focal plane. Only the
eight of the subtracted Airy pattern, denoted by � in the

ollowing, differs from one definition to another. The con-
ection between our definition of the perfect coronagraph
nd that adopted in [15,8] is given in Appendix A.
The perfect coronagraph subtracts an Airy pattern from

he complex amplitude of the incoming field wave in a
roportion that minimizes the energy coming out from the
oronagraphic mask. We will introduce the corresponding
ormalism in Subsection 2.B. As the perfect coronagraph
oes not have a real focal plane extension, there is no
eed for a Lyot stop in principle. Nevertheless, the down-
tream pupil is taken into account in the following for
omparison with the FQPM coronagraph.

. Short-Exposure Analytical Model
e begin in this section by describing the complex ampli-

udes in all planes of interest for a short exposure. The
oal of this first model is to describe the instantaneous
istribution of light in the detector focal plane. The com-
lex amplitude in the entrance pupil plane is given by

�0��,t� = Pu���ej��r��,t�+�u����, �1�

here Pu��� is the telescope pupil function.
The amplitude A1

− immediately before the corona-
raphic mask is given by the inverse Fourier transform
FT� of the previous amplitude,

A1
−��,t� = FT−1��0��,t�� = FT−1�Pu���ej��r��,t�+�u�����, �2�

here the inverse FT between the focal plane A1
−�� , t� and

he pupil plane �0�� , t� is defined by the relation

A1
−��,t� =�

−�

+��
−�

+�

�0��,t�e−2j	��d2�. �3�

e choose the convention of inverse FT for describing
ave propagation from pupil to focal plane, and FT for

he converse. This choice simplifies forthcoming equations
s it allows the object to conserve its orientation in all fo-

ig. 2. (Color online) Coronagraph response for a system comp
cured as the perfect coronagraph presents an infinite extinction
al planes. It is nothing else than an arbitrary orientation
f axes in focal planes. As introduced in Subsection 2.A,
he action of the perfect coronagraph is to minimize the
nergy coming out from the coronagraphic mask by sub-
racting an Airy pattern’s amplitude FT−1�Pu����. If we de-
ote by � the weight of an Airy pattern’s amplitude sub-
racted from the incoming wave, the corresponding focal
lane amplitude A1

+�� , t� is then given by relation

A1
+��,t� = A1

−��,t� − ��t�FT−1�Pu����. �4�

e denote by �0 the optimal value of � that minimizes the
utcoming energy:

�0�t� = arg min
��t�

�A1
−��,t� − ��t�FT−1�Pu�����2, �5�

nd we define the perfect coronagraph by Eq. (4) with
�t�=�0�t� given by Eq. (5).
The solution �0�t� of this least-squares minimization is

ell known: it corresponds to the projection of the incom-
ng field A1

− on the Airy pattern. Using Parseval’s theo-
em, this can be written in a pupil plane:

�0�t� = ��0��,t��Pu����, �6�

here ��� is the usual scalar product defined on functions
and g of a 2D variable �:

�f�g� =
1

S � �S
f����g���d2�.

�0�t��2 is therefore the exact definition of the instanta-
eous Strehl ratio as defined by Born and Wolf [17]. For
n off-axis source, the Strehl ratio tends rapidly to zero.
he wave subtracted by the perfect coronagraph therefore
lso tends to zero, which means that the outcoming wave
fter the coronagraph A1

+ tends toward A1
−: the farther the

ource is from the optical axis, the smaller the action of
he coronagraph. The so-defined perfect coronagraph ac-
ounts for the aberrations introduced upstream of the
oronagraphic mask. The weight of the subtracted Airy
attern ��� accounts for the total amount of aberrations
pstream of the mask. An example of tilted PSF is shown
n Fig. 2, where we can see the shape of coronagraphic
SF for a perfect coronagraph for different values of tip–

ilt upstream aberration from −1.6 to 1.6 rad.
We will keep in the following a circular uniform pupil,

ut this simplified model of coronagraphic mask may eas-
ly account for a non-uniform pupil shape, as with central
bstruction, apodization, or spider arms. Our goal in this
aper is not to demonstrate a high extinction rate for a
ealistic optical system, as many publications before did it
ery well. Our goal is to demonstrate that our formalism
s able to describe simply the imaging by a realistic long-
xposure coronagraphic system.

pure tip–tilt from −1.6 to 1.6 rad. Central PSF is completely ob-
non-aberrant system.
rising
for a
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The amplitude �2
−�� , t� just before pupil plane 2 is given

y the FT of A1
+�� , t�:

�2
−��,t� = FT�A1

+��,t�� = ej��r��,t�+�u����Pu��� − �0�t�Pu���.

�7�

lane 2 introduces the action of the Lyot stop and of the
tatic aberrations downstream of the Lyot stop. For the
ake of conciseness, we shall omit the spatial variables �
nd � in the following, in order to alleviate reading. The
nly remaining explicit variable is the time t. The ampli-
ude 
2

+�t� just after pupil plane 2 is then

�2
+�t� = �2

−�t�Pdej�d = Pdej��r�t�+�u+�d� − �0�t�Pdej�d, �8�

ith Pd the pupil function of the Lyot stop and �d the ab-
rrations downstream of the coronagraph. As the diam-
ter of Pd is usually taken smaller than the diameter of
u, the product PuPd has been replaced by Pd in Eq. (8).
he focal plane amplitude in the detector plane is then fi-
ally given by the inverse FT of �2

+:

A3�t� = FT−1��2
+�t�� = An�t� − �0�t�Ad, �9�

ith

An�t� = FT−1�Pdej��r�t�+�u+�d��,

Ad = FT−1�Pdej�d�, �10�

ith An the focal plane amplitude without coronagraphic
ask but with the Lyot stop and all the aberrations, and
d the focal plane amplitude due to the sole static aber-

ations downstream of the coronagraph.
For the perfect coronagraph, and in the trivial case

here �r=�u=0, we obtain �0=1 even if �d�0 by means
f Eqs. (1) and (6), so the outgoing intensity is null. This is
onsistent with the fact, well known by coronagraphic
ystem designers, that upstream aberrations are much
ore critical than downstream ones for system perfor-
ance.
The instantaneous intensity distribution h3 in the de-

ector plane is given by the square modulus of A3:

h3�t� = A3�t�A3
��t� = �An�t� − �0�t�Ad�2 = An�t�An

��t�

+ ��0�t��2AdAd
� − 2R��0

��t�An�t�Ad
��. �11�

he expression of h3�t� comprises the cross product of fo-
al plane amplitudes An�t� and Ad

�. With this expression,
he action of the coronagraph can clearly be interpreted
s creating a wave in “phase opposition” w.r.t. An, and the
esulting intensity in the focal plane is the interference
gure between these two waves. In Eq. (11), the purely
tatic term is Ad

�. All the other terms depend on the AO-
orrected wave front �r�t�.

. Long-Exposure Analytical Model
e now compute the long-exposure coronagraphic star

mage hc. It is given by the expected value of the short ex-
osure �h3�t��. In practice, this will be given by a time av-
rage of short exposures h3�t�. The aim of this computa-
ion is to express it as a function of statistical parameters
uch as the structure function D�r

and pupil aberrations
and � :
u d
hc = �h3�t�� = hn + ���0�t��2�AdAd
� − 2R���0�t�An

��t��Ad�,

�12�

ith

hn � �An�t�An
��t��. �13�

The two first terms of Eq. (12) are easily identified. The
rst term, hn, is the long-exposure PSF without corona-
raph but using the Lyot stop. This PSF can be written as
he convolution of two terms, static OTF and turbulent
TF, which can be written in Fourier space as

h̃n = �Pdej��u+�d�
� Pdej��u+�d�� · e−1/2D�r, �14�

ssuming in the remainder of the paper that the residual
hase is stationary [18]. The second term of Eq. (12),
��0�t��2�AdAd

�, is the mean PSF obtained with the sole
ownstream aberrations, weighted by the mean Strehl ra-
io during observation. The term ���0�t��2� can be rewrit-
en as a function of the study parameters:

���0�t��2� =
1

S2 �� Pu���Pu����

� �e�j��r��,t�+�u����−j��r���,t�+�u�������d�d��

=
1

S2 �� Pu���Pu����e−1/2D�r
���−��+j��u���−�u�����

�d�d��, �15�

=
1

S2 �� �e−1/2D���u����� · �u
�����d��, �16�

ith D�r
���−�� the residual phase structure function and

u the static field in the pupil corresponding to static up-
tream aberrations �u:

�u = Puej�u. �17�

ssuming the stationarity of �r, the coefficient ���0�t��2�
herefore depends only on statistical and deterministic
arameters, namely the residual phase structure function
nd the upstream aberrations.
We now turn to the third term of Eq. (12), in order to

xpress it as a function of statistical quantities. In order
o obtain a useful expression for the term ��0

��t�An�t��, it is
andatory to expand the two quantities �0 and An. The

rst one is the average of the incoming field on the pupil,
he second one is the FT of the field without coronagraph
n pupil Pd:

��0
��t�An��,t�� =

1

S�� �
�

Pu���e−j��u���+�r��,t��

�� �
��

Pd����ej��r���,t�+�u����+�d�����

� e−2j	���d�d��	 . �18�
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Grouping the integrals together and leaving the deter-
inistic quantities outside of the expected value yields

��0
��t�An��,t�� =

1

S ��� �
�,��

�ej��r���,t�−�r��,t���

� Pu���Pd����e−j�u���ej��u����+�d�����

� e−2j	���d�d��. �19�

The structure function of the residual phase is easily
dentified as the first factor in this integral. Additionally
 t
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nder the assumed stationarity of �r�t�, the structure
unction does not depend on � and �� but only on the dif-
erence ��−� and is written D�r

���−�� [3,4]:

��0
��t�An��,t�� =

1

S ��� �
�,��

e−1/2D�r
���−��Pu���Pd����

� e−j�u���ej��u����+�d�����e−2j	���d�d��. �20�

We now gather all the terms depending on � under the
ame integral; the convolution product � of the residual

���� therefore appears:
urbulent OTF with amplitude �u
��0
��t�An��,t�� =

1

S � �
��

Pd����ej��u����+�d����� � �� �
�

e−1/2D�r
���−��Pu���e−j�u���d��

�e−1/2D
r��u

������

e−2j����d��. �21�
t is now possible to express the term ��0
��t�An�� , t�� with

espect to deterministic quantities such as the residual
hase structure function and the static aberrations:

��0
��t�An��,t�� =

1

S
FT−1
�ud��� · �e−1/2D���u

������, �22�

ith

�ud��� = Pd���ej��u���+�d����. �23�

Combining this last result with Eq. (12) finally yields
he following expression for the coronagraphic long-
xposure on-axis star image:

hc = hn + ���0�t��2�hd −
2

S
R�FT−1
�ud � �e−1/2D�r��u

���Ad
�.

�24�

his expression gives the long-exposure light distribution
f the star observed with a perfect coronagraph. This ex-
ression takes into account upstream and downstream
berrations, as well as residual turbulence and a Lyot
top. This long-exposure description is the key point of
he coronagraphic imaging. To the best of our knowledge,
his is the first time that such an expression is obtained
ith so few assumptions. We validate this model in Sec-

ion 3. This direct model for coronagraphic observation
hould improve exoplanet detection, as it allows one to de-
elop dedicated coronagraphic image inversion methods,
n example of which is given in Section 4.

. VALIDATION OF THE ANALYTICAL
ODEL BY SIMULATIONS
e validate in this section the analytical long-exposure

oronagraphic image model. The numerical simulation
onditions are given in Subsection 3.A. In Subsection 3.B
e compare our analytical model to a simulated one. The

imulation is performed by summing a large number of
hort-exposure simulated images of an on-axis point
ource. In Subsection 3.C, we compare our analytical re-
ponse of a perfect coronagraph to that of a real corona-
raph, namely a FQPM coronagraph. We investigate in
ubsections 3.D and 3.E the sensitivity of the proposed
nalytical model to an imperfect calibration of the observ-
ng parameters to be used in the computation of the ana-
ytic model.

. Validation Conditions
e consider here point-like stars and companions ob-

erved with a ground-based 8 m telescope equipped with
O. The simulations take into account both the AO-
orrected turbulence and static aberrations. The baseline
Q system considered is the high-performance AO system
AXO [19] of the SPHERE instrument [2]. We use a
ourier-based simulation method that describes the AO
ia the spatial power spectrum of the residual phase [20]
nd is presented in [19]. The power spectral density
PSD) of the residual phase after AO correction has al-
eady been used to design the SPHERE instrument [19].
he AO residual PSD includes servo-lag term, fitting

erm, RON and photon noise, and spatially-filtered
hack–Hartmann [21,22]. The simulation takes the fol-

owing realistic set of parameters: a 41�41 subaperture
hack–Hartmann, a 1.2 kHz sampling frequency, a guide
tar of magnitude 8, a Kolmogorov turbulence, and a see-
ng of 0.8 arcsec at 0.5 �m. It is to be noted that the pupil
onsidered in the following simulations is circular and
ithout any central obstruction. Such a pupil is certainly

oo simple and unrealistic w.r.t. a real telescope system,
ut our goal here is to validate an image formation model
ith a simple system. Moreover we know that the effi-

iency of the coronagraph will decrease with a real pupil
i.e., with central occultation). In addition to the turbu-
ence residuals, we need to define a typical set of static ab-
rrations in our simulations. Following the analysis per-
ormed for the specification of the SPHERE instrument,
e consider a spatial spectrum of upstream aberrations
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hat follows the shape shown in Fig. 3. The low frequen-
ies (up to 8 cycles per pupil) are assumed to be compen-
ated down to a residual wavefront error of 5 nm through
careful calibration, e.g., by phase diversity [23]. The me-
ium frequencies from 8 to 20 cycles per pupil (the AO
ut-off frequency) present a total standard deviation of
5 nm. The total RMS optical path difference (OPD) error
f the upstream wavefront is thus u=35.3 nm. No spatial
requency for static aberrations above 20 cycles per pupil
s considered here. Of course this choice is unrealistic as
e know that realistic systems present some aberrations
t those spatial frequencies. But the impact of static ab-
rrations is negligible compared to residual turbulence
utside the AO halo. Moreover, the choice of f−2 is rather
essimistic, as the M1 mirror of the Very Large Telescope
VLT) presents a f−3 PSD (real measurement). Down-
tream static aberrations are randomly generated accord-

−2

ig. 3. Static aberrations spectrum upstream of the corona-
raph mask. Low frequencies are assumed to be pre-
ompensated down to a residual of 5 mm. The medium frequen-
ies follow a 1/ f2 shaped spectrum, with an RMS value of 35 nm.
he total RMS value of the OPD of the upstream aberrations is
u=35.3 nm.
ng to a f spectrum, f being the spatial frequency in the f
upil, with a total RMS OPD error of 100 nm. Images are
omputed at a wavelength �=1.6 �m and are Shannon-
ampled. The static aberrations are assumed to be cali-
rated, but not compensated. The SPHERE instrument is
lanned to combine images obtained simultaneously at
ifferent wavelengths on different imaging paths. Even if
he AO loop could compensate for static aberrations on
ne path, differential static aberrations would be present
n the other path, and calibrated.

In Fig. 4, we present the typical profiles of long-
xposure star images with and without coronagraph for
he conditions considered in this paper. The circularly av-
raged intensity profiles are plotted with respect to field
f view, and the intensity is normalized to the incoming
otal intensity in the entrance pupil. In other words, the
ntegral of hn (Eq. (13), PSF without coronagraph) is 1.
he value of hn at the origin of Fig. 4 is thus proportional

o the Strehl ratio. The proportionality factor is 0.14 if the
SF is centered between 4 pixels and 0.20 if the PSF is
entered on one pixel. The focal plane area located be-
ween 0 and 20� /D is the PSF area cleaned by the AO cor-
ection, while the area beyond 20� /D is corrugated by the
esidual halo due to the uncorrected high spatial frequen-
ies of the turbulence. Here SR=87%. We observe the
uge gain brought by the coronagraph for angular sepa-
ations lower than 20� /D. We also plot the level of the
aximum intensity of a planet of contrast 2.104. This

evel depends on how the planet is centered w.r.t. the pixel
rid. The two horizontal dashed–dotted lines represent
he best and worst cases (planet at center of pixel and be-
ween 4 pixels, respectively). The upstream aberration-
nduced speckles are the principal contributor to the star
esidual between 8 and 20� /D. The AO residuals are
ominant below 8� /D and beyond 20� /D. With a wave-
ront error of 35 nm, it is not possible (or only marginally)
o detect a planet of contrast 2.104 between 0 and 20� /D

rom a single image.
ig. 4. Profiles of long-exposure star images with and without coronagraph for the conditions given in Subsection , including AO re-
iduals (SPHERE case), upstream and downstream aberrations, perfect coronagraph, at wavelength �=1.6 �m. Profiles normalized to 1
hoton in the entrance pupil. Horizontal dotted–dashed lines: maximum intensity for a planet of contrast 2.104 (centered on 1 pixel and
etween 4 pixels). Vertical dotted–dashed line: cutoff of the AO correction �20� /D�.



B
S
T
p
l
s
e
w
p
d
t
t
n
i
p

d
a

w
s
�
e
s
T
r
r
l

a
t
s
g
r
(
m
l

F
a
c

F
d
c

Sauvage et al. Vol. 27, No. 11 /November 2010 /J. Opt. Soc. Am. A A163
. Long-Exposure Analytical Model versus Sum of
hort-Exposure Images
he validation of the long-exposure image model has been
erformed by comparing Eq. (24) for hc with an empirical
ong-exposure PSF. The latter is obtained by summing N
hort-exposure coronagraphic PSF’s h3��r,k�. Each short-
xposure coronagraphic PSF is numerically simulated
ith an independent realization of a residual turbulence
hase screen �r,k following the Fourier approach, the ad-
ition of the upstream aberrations—the propagation of
he light field by Fourier transform taking into account
he stops and masks presented in Fig. 1—a perfect coro-
agraph, and the downstream aberrations, as explained

n Subsection 2.B [Eq. (11)]. The expression for the em-
irical long-exposure PSF is therefore

�h3�N =
1

N�
k=1

N

h3��r,k�. �25�

In order to compare PSF generated with different con-
itions, we introduce here the notion of circularly aver-
ged error profile. This profile is defined as follows:

ig. 5. (Color online) (Left) Analytical model, (center) simulated
bsolute value of difference in log-scale and same dynamic. The im
onditions of simulation are the ones explained in Subsection 3.A

ig. 6. Circularly averaged profiles of error between the analy
ifferent cases of long-exposure convergence. The image formatio
onditions are explained in Subsection 3.A.
���� =� 1

2	
�

0

2	

�hc��,�� − �h3�N��,���2d�, �26�

ith �� ,�� the polar coordinate variables, hc being by in-
tance the coronagraphic PSF computed analytically, and
h3�N being the simulated one, with summation of N short
xposures. This error term is relevant to compare the
hape of two PSFs with respect to angular separation.
his does give only a very rough idea of detectability
eachable with the model, as it shows the average RMS
esidual after subtracting the model image from the simu-
ated one.

The results of Fig. 5 show the numerical empirical and
nalytical coronagraphic images of a centered star and
he error term as defined previously in log-scale and the
ame dynamic range. The analytical model shows a very
ood matching of the global structure of the response: the
esiduals are mostly situated on the most luminous part
AO halo and on-axis residual). These residuals are
ainly due to the finite exposure time of the empirical

ong exposure. We plot in Fig. 6 the circularly averaged

agraphic PSF with N=1000 turbulence realizations, and (right)
rmation includes residual turbulence and static aberrations. The

odel and the simulated star image. The profiles are plotted for
udes residual turbulence and static aberrations. The simulation
coron
age fo
.

tical m
n incl
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nalytical intensity profile and error profiles for the em-
irical long-exposure PSF. The profiles are normalized by
he total number of photons in the entrance pupil. We ob-
erve, as expected, that the error decreases as the number
f short-exposure images increases, with a decrease by a
actor �10 for an increase of the number of short expo-
ures by a factor of 10. A summation of 1000 independent
hort exposures corresponds to a typical observing time of
0 to 100 s, which is realistic. These simulation results
alidate the model, which describes correctly the struc-
ure of the long-exposure coronagraphic PSF for a perfect
oronagraph.

. Perfect Coronagraph Model versus FQPM
oronagraph
ne of the coronagraphs that will be implemented on
PHERE is a FQPM [24]. This coronagraph is based on
he principle of an original mask design, a four-quadrant
inary phase mask. The mutually destructive interfer-
nces of the coherent light from the main source produce
very efficient nulling, which is theoretically able to com-
letely cancel the incoming light in the case of a mono-
hromatic, perfectly manufactured mask, an aberration-
ree wave, and in the absence of a central obstruction in
he telescope.

ig. 7. (Color online) (Left) Analytical model , (center left) FQPM
nce, and (right) the same without accounting for the biquadran
idual turbulence and static aberrations. The conditions of simu

ig. 8. Circularly averaged profiles of error between the analyti
mage formation includes residual turbulence and static aberrat
In order to validate our long-exposure analytical model
ith respect to more realistic coronagraphs, we have com-
ared it to the empirical long-exposure coronagraphic im-
ge obtained with a FQPM coronagraph. For this simula-
ion, the perfect coronagraph has been replaced by a
PQM. Figure 7 shows the on-axis star response of such a
oronagraph compared to our analytical model. Except for
he field positions situated on the X and Y axes, the dif-
erence between the two coronagraphic images is very
mall at any position. Figure 8 shows the error profile be-
ween the analytical model and the simulated FQPM
oronagraph after removal of points around the X and Y
xes. The relative difference ranges between 3% and 8%
or any field position ��2� /D and is only slightly larger
han the convergence error of Fig. 6 for 1000 exposures.
herefore, our model, although derived for a perfect coro-
agraph, is appropriate to process data obtained with a
QPM coronagraph.

. Miscalibration of the Structure Function
e first study the influence of a miscalibration of the

tructure function D�r
. The test performed by simulation

s as follows:

nagraphic PSF simulated, (center right) absolute value of differ-
ts (log-scale, same dynamic). The image formation includes re-

are the ones explained in Subsection 3.A.

del and the simulated star image with FPQM coronagraph. The
he simulation conditions are explained in Subsection 3.A.
coro
ts poin

lation
cal mo
ions. T
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• computation of long-exposure coronagraphic star im-
ge hc using our model with the true D�r

(conditions given
n Subsection 3.A);

• computation of long exposure coronagraphic star im-
ge ĥc using our model but with miscalibrated D�r

, de-
oted D̂�, where

D̂� = �D�r
,

ith �=0.8 to 0.95, corresponding for instance to a poor
stimation of the seeing conditions. This is a rough way to
ntroduce miscalibration, as a modification of turbulence
onditions would result in more complexity;

• computation of the differential image h�=hc− ĥc.

We present in Fig. 9 the impact of the miscalibration of
�r

on the differential image h�. Circularly averaged pro-
les are plotted for �=0.8, 0.9, and 0.95. The profile of hc

s also plotted as reference. For �=0.9, subtracting ĥc in-
tead of hc from an image would still bring a substantial
ttenuation of the residual star light, typically a factor of
he order of 10. This shows that such an error in the cali-
ration of D�r

will not dramatically jeopardize the detec-
ion of planets of contrast lower than 105. But to achieve
igher contrast, the requirement on the quality of the
alibration is more stringent.

. Miscalibration of the Upstream Static Aberrations
econd, we study the influence of the miscalibration of the
tatic aberrations. Concerning the downstream static ab-
rrations, we found a negligible impact of their miscali-
ration on the image difference. Indeed, these aberrations
ave a very weak contribution to the image formation in a
oronagraphic instrument, as already pointed out in [8].
he only aberrations studied herein are the ones intro-
uced upstream of the coronagraphic mask, �u. The test
erformed by simulation is as follows:

ig. 9. Profiles of the difference h� for different error levels on th
urve, �=0.9. Dotted–dashed curve, �=0.95. Continuous curve, p
• computation of long-exposure coronagraphic star im-
ge hc using our model with the true �u (conditions given
n Subsection 3.A);

• computation of long-exposure coronagraphic star im-
ge ĥc using our model but with miscalibrated �u, denoted

ˆ , where

�̂ = �1 + �� · �u,

ith � chosen positive or negative in a way that the error
n �u ranges from 0.00 to 0.20;

• computation of the differential image h�=hc− ĥc.

We compute the profiles of the differential images h�

or different RMS wavefront errors for �̂: �=0.05 to 0.30. In
ig. 10, the profiles are plotted with respect to angular
eparation. The major impact of the miscalibration of the
pstream aberrations is inside the AO halo. A calibration
rror of the order of 10 nm ��=0.20� for �̂ with respect to
u significantly limits the detectability of a planet be-
ween 8 and 20� /D, which corresponds to the spatial fre-
uency range of the dominant upstream aberrations of
ur simulations. To obtain an attenuation of a factor 10 of
he residual star light after subtraction, the error be-
ween �̂ and �u must be smaller than or equal to 3.5 nm
�=0.10�. This is a demanding requirement for the cali-
ration of �u, but it seems achievable with optimized and
ccurate techniques [23]. It allows one to detect planets of
ontrast 2.104. To detect at higher contrasts requires re-
ucing the amplitude of the upstream aberrations, using
everal wavelengths (spectral differential imaging or in-
egral field spectrographs), and/or using field rotation to
isentangle speckles from planets [9,11].
An effectiveness comparison can be done here for the

omputation of coronagraphic PSF. On the one hand, our
odel is costless in term of numerical computation, com-

ared to the simulation of 1000 empirical PSFs. More-
ver, the computation given by our model is exact, and
oes not suffer from convergence errors. On the other

alibration of the structure function. Dotted curve, �=0.8. Dashed
of h . For lines and conditions see caption of Fig. 4.
e misc
rofile
 c
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and, the simple coronagraph model used in our PSF
omputation does not allow one to describe correctly the
esidual very close to the optical axis after a realistic coro-
agraph. The impact of such model errors very close to
he optical axis is actually modest because planets will be
earched for farther away from the axis. We will see in
ection 4 another feature of a simple image formation
odel: this capability may be very useful in the case of an

nversion model, where the observed object or the system
arameters will have to be estimated.
We have seen that the subtraction of the analytical
odel allows one to gain in detectability. The next section
ill show a more optimized inversion process that in par-

icular incorporates the estimation of the star flux.

. TOWARD PLANET DETECTION: USE OF
HE ANALYTICAL MODEL IN AN

NVERSION METHOD
his analytical model has been implemented into an in-
ersion method described below. First, we develop a sim-
lified direct model of image formation in a coronagraphic
ase. Then we describe the planet estimation assuming
hat the upstream and downstream aberrations and the
hase structure function have been calibrated prior to the
econvolution.

. Two-PSF Model and Image Formation
he exact computation of an observed scene through a
oronagraphic instrument requires knowledge of the
eld-dependent PSF h�� ,��� in the whole field, where ��

s the position of a point source and � the current position
n the image. Although we have just derived such an ex-
ression, the manipulation of such massive data may be
omputationally expensive. However in the framework of
xoplanet detection, the observed scene is composed of
ne bright on-axis point-like source, the star, and a pos-
ible weak off-axis environment. In the simple case of a
yot coronagraph, for instance, the light coming from a

ig. 10. Profiles of the difference h� for different calibration erro
urve, �=0.10 �3.5 nm�. Dotted–dashed, �=0.20 �7.0 nm�. Dot dot
nd conditions see caption of Fig. 4.
ource at position �� away from the optical axis is only
lightly affected by the focal mask: the PSF h�� ,��� away
rom the axis is very close to the PSF hn��� of Eq. (13)
ithout a coronagraphic mask. Close to the optical axis,
n the contrary, the structure of the PSF is strongly per-
urbated by the presence of the coronagraphic mask. The
tudy of Malbet [25] shows that the PSF may be approxi-
ated by hn��� outside a small transition zone � /D wide

round the focal mask. For the perfect coronagraph

h��,��� � hn�� − ��� for ���� � �/D. �27�

Therefore a simplified model of the image formation is
hosen in the following and accounts for two PSF’s: one
n-axis hc for the star following the model developed in
ection 2 and one off-axis hn without coronagraphic mask

or the faint environment. This approach is valid for any
ff-axis environment, be it an extended scene or one or
ore point-like sources.
As a consequence, we will decompose the astrophysical

arget into two parts: the star itself, whose light is par-
ially rejected by the coronagraph, and its environment,
alled hereafter the object and denoted by o���, which is
he object of interest, the observed scene without the star
ignal. Let us denote by i the recorded, discrete image,
here the boldface recalls that it is a vector concatenating
ll pixels. Similarly, let us denote by o, hc, hn the dis-
retized versions of functions o���, hc���, hn���. The image
ormation of the star and its environment may then be re-
ritten as

i = F0 · hc + hn�o, �28�

here F0 stands for the star flux in the pupil before the
oronagraph and � for the convolution product. We con-
ider that the object is a 2D map of intensity o to be esti-
ated and not a set of Dirac functions whose amplitude

nd position are unknown. We recall that hc can be com-
uted from Eq. (24) based on the calibrations of the struc-
ure function of the turbulent phase and the upstream

e upstream aberrations. Dotted curve, �=0.05 �1.75 nm�. Dashed
ash, �=0.30 �10.5 nm�. Continuous curve, profile of hc. For lines
rs of th
dot–d
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nd downstream pupil static aberrations. In the follow-
ng, we assume that these calibrations are available but
mperfect by 5%, which means an error of 1.75 nm RMS
or �u calibration, and an error of 11 nm on D� calibra-
ion. Hence, the parameters to be estimated in Eq. (28)
re the object o and the star flux F0.

. Joint Estimation of Star Flux and Object
s in differential imaging [26], we would like to calibrate

he residual star light F0hc and subtract it from the im-
ge in order to retrieve the star’s faint environment. We
ropose here to jointly fit the star flux F0 and estimate the
nknown object o. The joint estimation is done by mini-
izing a global MAP criterion J [Equation (29)] with re-

pect to the unknowns F0 and o:

J�F0,o� = � �i − F0 · hc� − �hn�o�

b
�2

+ JF0
�F0� + Jo�o�,

�29�

here b
2 is the noise variance (depending on pixel posi-

ion), and JF0
�F0� and Jo�o� are the regularization terms

ncorporating a priori knowledge of parameters to esti-
ate.
In practice, this minimization is done by alternating

he estimation of these two parameters F0 and o, i.e., by
inimizing the criterion alternately with respect to each

f the unknowns, considering that the other one is fixed.
s the criterion is quadratic with F0, the solution of the
tar flux for the current estimate of the object is given by
he analytical expression

F̂0�o� =
�

�

�i − hn�o� · hc���/b
2���

�
�

hc���/b
2���

. �30�

or the first iteration, o is set to zero.
Then for the current estimation of F0, minimization of

q. (29) is equivalent to a classical minimization of the
ollowing maximum a priori (MAP) criterion:

ig. 11. (Color online) (Left) Simulated empirical long-exposure
ation 14� /D, sum of 1000 short exposures, star photon flux F0=
ironment after subtraction of the star response F̂0 ·hc compute
fter MAP deconvolution. Images are in linear scale, the star resid
he detailed simulation conditions see Subsection 3.A.
J�o,F̂0� = � i��F̂0� − hn�o

b
�2

+ Jo�o� + constant �31�

here the differential image i��F̂0� is defined as

i��F̂0� = i − F̂0 · hc.

o�o� is for instance a quadratic Wiener-type regulariza-
ion [27] based on a parametric model of the PSD of the
bject. We use the MISTRAL code [28] to minimize Eq.
31) and estimate the object under the positivity con-
traint. As in ([29], Appendix A), all hyperparameters
noise variance and object PSD) are estimated in an un-
upervised fashion prior to deconvolution by maximum
ikelihood. At convergence, i� contains our best estimate
f the star-subtracted image of the object. In practice, for
n object much fainter than the central star, one global it-
ration, i.e., one F0 estimation followed by one o estima-
ion, is enough.

In Figs. 11 and 12, we present an example of the pro-
osed method to estimate planets in the environment of a
tar from a long-exposure AO-corrected coronagraphic im-
ge. The conditions are the ones given in Subsection 3.A.
n the image on the left in Fig. 11, we observe the simu-
ated empirical long-exposure coronagraphic image in-
luding photon noise, for F0=1010 photons. This flux cor-
esponds to a G0-type star of H magnitude 8 and an
xposure time of 100 sec with a global throughput of 13%
or such an instrument [2]. The detector electronic noise
s assumed to be negligible. Center image is i� after sub-
raction of the star response at the first iteration. Here,
c is computed considering imperfect calibrations of the
tructure function D�r

��=0.95� and of the upstream ab-
rrations �u ��=0.05� corresponding to a RMS wavefront
rror of 1.75 nm compared to the true aberrations. These
onditions are quite conservative in view of the capability
f the techniques for turbulence and aberration calibra-
ions to be implemented in SPHERE [23,30]. The compan-
on of contrast 2.104 is barely discernible but still con-
olved by the PSF. The image on the right shows the
esult of object map o after deconvolution. We define the

graphic star image with a companion of contrast 2.104 and sepa-
erfect coronagraph; (center) differential image i� of the star en-
miscalibrated D�r

��=0.95� and �u ��=0.05�; (right) object map
saturated, only the AO-corrected area is shown, up to 20� /D. For
corona
1010, p

d with
ual is
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NR of the companion as the ratio of the estimated maxi-
um flux of the companion in the considered plane (raw

mage, difference image, and deconvolved object) over the
MS value of background signal taken in a crown situ-
ted at the expected companion’s radius. The maximum
ux of the companion is estimated as the maximum mea-
ured intensity around the expected companion position,
inus the average value of intensity estimated in the

ame crown.
In the raw image (left), the companion’s SNR is esti-
ated to be slightly less than 1. In the difference image

center), the SNR is of the order of 25. In the object 2D
ap after MAP deconvolution (right), the SNR is more

han 100, which is a significant enhancement. The gain is
factor of more than 4, as expected, corresponding

oughly to the mean number of pixels in the core of the
SF. The gain compared to the raw image is of two orders
f magnitude. We have shown here a simple inversion
ethod using the coronagraphic image formation model.
his method uses the coronagraphic image formation
odel in order to estimate the star flux and the observed

bject, assuming the system parameters are quite well
nown. In the more realistic case where the system pa-
ameters are unknown, or miscalibrated, this model
hould be of prime help for developing a focal-plane coro-
agraphic wave-front sensor or a structure function esti-
ator [31]. This kind of estimation requires the use of a

riterion minimization, which implies the computation of
he image formation model typically a few hundreds,
hich can definitely not be done with a summation of
000 empirical PSFs. Of course the estimation of more pa-
ameters than star flux and the object intensity requires
dditional information. This additional information is
iven by more images differing by a known diversity, as
n introduced calibrated aberration, or images recorded
t several wavelengths. A more sophisticated algorithm
as therefore to be developed, able to deal with numerous

mages and to estimate the aberrations as well as the re-
idual structure function and the observed object. For in-
tance, this model will be of prime help in dealing with
he hyperspectral image cubes that will be acquired on
PHERE Integral Field Spectrograph. The diversity in-
roduced by wavelength range should help in disentan-
ling static aberrations, residual turbulence structure
unction, coronagraph action, and the exoplanet faint flux.
his focal-plane post-coronagraphic method has been

ig. 12. (Color online) Horizontal profile of Fig. 11, linear scale.
ointed out by [32] as one of the most attractive, as it is
irectly sensitive to aberration perturbations in the focal
lane. Note that as our coronagraphic image formation
odel is not accurate very close to the optical axis com-

ared to a realistic coronagraphic mask, we can guess
hat wave-front sensing of low-order aberrations might be
iased, as mentioned by [33].

. CONCLUSION
e have developed and validated an analytical model for

oronagraphic imaging through AO-corrected turbulence.
his analytical model accounts for the major parameters
f imaging through turbulence: the structure function of
he residual turbulent phase, as well as upstream and
ownstream static aberrations. This analytical model can
e used to compute and simulate long-exposure corona-
raphic images very efficiently without the need for the
omputer-intensive simulation of numerous short expo-
ures. It can also be used as a data model in inversion
rocedures such as image restoration or planet detection
ethods.
With realistic miscalibrations of �u and D� we have

hown that subtracting the analytical model from the im-
ge brings roughly a factor of 10 attenuation in the re-
idual coronagraphic image, which itself brings about the
ame attenuation w.r.t. the non-coronagraphic image.

The analytical model has been implemented in a first
nversion method based on a Bayesian approach, where
he star flux and the observed object are jointly estimated.

For a planet contrast of 2.104 and SPHERE conditions,
his inversion method showed a SNR increase from a
alue of 3 in the raw image up to 30 in the image differ-
nce i�, and up to 160 in the restoration.

Short-term future work includes the validation of this
odel on laboratory coronagraphic data. Work in progress
ot presented in this paper suggests that this model can
e used as an essential build-in bloc of a coronagraphic
hase diversity wavefront sensor.
Long-term future work includes the development of a

lobal processing method allowing one to use this model
mage, e.g., in contexts such as angular differential imag-
ng, dual band imaging, or IFS imaging. This global pro-
essing method will allow one to estimate observed object
ntensity as well as system parameters.

PPENDIX A: CONNECTION WITH OTHER
EFINITIONS OF PERFECT
ORONAGRAPH

n order to establish the connection between our adopted
efinition of the perfect coronagraph [15,8], let us in this
ppendix briefly consider the case of a long exposure, and
ssume that:

• �u�� , t� is considered a zero-mean random spatial
eld,
• �r�� , t� and �u�� , t� are ergodic with respect to space

i.e., there is an equivalence between expected value and
patial integration),
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• the surface S of the pupil is wide enough to guaran-
ee that spatial statistics on the aperture are well
stimated,

hen it is easy to show using Eqs. (1) and (6), that �0�t�
efined as Eq. (5) does not depend on time and that one
an identify the expected value ���0�t��2� with the coherent
nergy Ec, defined as

Ec = e−
�r��,t�+�u

2
, �A1�

ith f
2 being the spatial variance of function f in the pu-

il defined as

f
2 =

1

S � �S
�f2��� − � 1

S � �S
f����d2����2

d2�,

hich does not depend on time with the above assump-
ions. In [15,8], the perfect coronagraph was defined as
ubtracting an Airy pattern weighted by �Ec. From the
bove we can see that such a definition is valid only in a
ong-exposure case with an ergodicity assumption and an
nfinite pupil size. On the other hand, the definition of Eq.
6), which is the instantaneous SR and is used in the pa-
er, makes sense whatever the phase statistics may be.

CKNOWLEDGMENTS
he authors want to thank Marie Ygouf for her careful
roofreading of this paper, as well as the reviewers for
heir highly perceptive review. This work also received
he support of PHASE, the high-angular-resolution part-
ership among ONERA, Observatoire de Paris, CNRS,
nd Université Paris Diderot.

EFERENCES
1. B. A. Macintosh, J. R. Graham, D. W. Palmer, R. Doyon, J.

Dunn, D. T. Gavel, J. Larkin, B. Oppenheimer, L. Saddle-
myer, A. Sivaramakrishnan, J. K. Wallace, B. Bauman, D.
A. Erickson, C. Marois, L. A. Poyneer, and R. Soummer,
“The Gemini Planet Imager: from science to design to con-
struction,” Proc. SPIE 7015, 701518 (2008).

2. J.-L. Beuzit, M. Feldt, K. Dohlen, D. Mouillet, P. Puget, and
F. Wildi, “SPHERE: a ‘planet finder’ instrument for the
VLT,” Proc. SPIE 7014, 701418 (2008).

3. J. M. Conan, P. Y. Madec, and G. Rousset, “Evaluation of
image quality obtained with adaptive optics partial correc-
tion,” in Progress in Telescope and Instrumentation Tech-
nologies, ESO Conference and Workshop Proceedings,
M.-H. Ulrich, ed. (ESO, 1992), p. 475.

4. J.-P. Véran, F. Rigaut, H. Maître, and D. Rouan, “Estima-
tion of the adaptive optics long-exposure point-spread func-
tion using control loop data,” J. Opt. Soc. Am. A 14, 3057–
3069 (1997).

5. E. E. Bloemhof, R. G. Dekany, M. Troy, and B. R. Oppenhe-
imer, “Behavior of remnant speckles in an adaptively cor-
rected imaging system,” Astrophys. J. 558, L71–L74 (2001).

6. A. Sivaramakrishnan, C. D. Koresko, R. B. Makidon, T.
Berkefeld, and M. J. Kuchner, “Ground-based coron-
agraphy with high-order adaptive optics,” Astrophys. J.
552, 397–408 (2001).

7. M. D. Perrin, A. Sivaramakrishnan, R. B. Makidon, B. R.
Oppenheimer, and J. R. Graham, “The structure of high
Strehl ratio point-spread functions,” Astrophys. J. 596,
702–712 (2003).

8. C. Cavarroc, A. Boccaletti, P. Baudoz, T. Fusco, and D.
Rouan, “Fundamental limitations on Earth-like planet de-
tection with extremely large telescopes,” Astron. Astrophys.
447, 397–403 (2006).

9. C. Marois, D. Lafrenière, R. Doyon, B. Macintosh, and D.
Nadeau, “Angular differential imaging: A powerful high-
contrast imaging technique,” Astrophys. J. 641, 556–564
(2006).

0. D. Lafrenière, C. Marois, R. Doyon, D. Nadeau, and É. Ar-
tigau, “A new algorithm for point-spread function subtrac-
tion in high-contrast imaging: A demonstration with angu-
lar differential imaging,” Astrophys. J. 660, 770–780
(2007).

1. L. M. Mugnier, A. Cornia, J.-F. Sauvage, G. Rousset, T.
Fusco, and N. Védrenne, “Optimal method for exoplanet de-
tection by angular differential imaging,” J. Opt. Soc. Am. A
26, 1326–1334 (2009).

2. C. Marois, R. Doyon, D. Nadeau, R. Racine, M. Riopel, P.
Vallée, and D. Lafrenière, “TRIDENT: an infrared differen-
tial imaging camera optimized for the detection of metha-
nated substellar companions,” Publ. Astron. Soc. Pac. 117,
745–756 (2005).

3. A. Boccaletti, D. Mouillet, T. Fusco, P. Baudoz, C. Cavarroc,
J.-L. Beuzit, C. Moutou, and K. Dohlen, “Analysis of
ground-based differential imager performance,” presented
at IAUC 200, Direct Imaging of Exoplanets: Science and
Techniques,” Nice, France, October 2005 (2005).

4. I. Smith, M. Carbillet, A. Ferrari, D. Mouillet, A. Boccaletti,
and K. Dohlen, “Simulation of moving exoplanets detection
using the VLT instrument SPHERE/IRDIS,” Proc. SPIE
7015, 70156F (2008).

5. C. Aime and R. Soummer, “The usefulness and limits of
coronagraphy in the presence of pinned speckles,” Astro-
phys. J. Lett. 612, L85–L88 (2004).

6. R. Soummer, K. Dohlen, and C. Aime, “Achromatic dual-
zone phase mask stellar coronagraph,” Astron. Astrophys.
403, 369–381 (2003).

7. M. Born and E. Wolf, Principles of Optics, 6th (corrected)
ed. (Pergamon Press, 1993).

8. F. Roddier, “The effects of atmospherical turbulence in op-
tical astronomy,” in Progress in Optics, Vol. XIX, E. Wolf,
ed. (North Holland, 1981), pp. 281–376.

9. T. Fusco, G. Rousset, J.-F. Sauvage, C. Petit, J.-L. Beuzit, K.
Dohlen, D. Mouillet, J. Charton, M. Nicolle, M. Kasper, and
P. Puget, “High order adaptive optics requirements for di-
rect detection of extra-solar planets. application to the
sphere instrument,” Opt. Express 14, 7515–7534 (2006).

0. L. Jolissaint, J.-P. Véran, and R. Conan, “Analytical model-
ing of adaptive optics: foundations of the phase spatial
power spectrum approach,” J. Opt. Soc. Am. A 23, 382–394
(2006).

1. L. A. Poyneer and B. Macintosh, “Spatially filtered wave-
front sensor for high-order adaptive optics,” J. Opt. Soc.
Am. A 21, 810–819 (2004).

2. T. Fusco, C. Petit, G. Rousset, J.-M. Conan, and J.-L.
Beuzit, “Closed-loop experimental validation of the spa-
tially filtered Shack–Hartmann concept,” Opt. Lett. 30,
1255–1257 (2005).

3. J.-F. Sauvage, T. Fusco, G. Rousset, and C. Petit, “Calibra-
tion and pre-compensation of non-common path aberrations
for extreme adaptive optics,” J. Opt. Soc. Am. A 24, 2334–
2346 (2007).

4. D. Rouan, P. Riaud, A. Boccaletti, Y. Clénet, and A. Labey-
rie, “The four-quadrant phase-mask coronagraph. I. Prin-
ciple,” Publ. Astron. Soc. Pac. 112, 1479–1486 (2000).

5. F. Malbet, “High angular resolution coronography for adap-
tive optics,” Astron. Astrophys. Suppl. Ser. 115, 161–174
(1996).

6. R. Racine, G. A. Walker, D. Nadeau, and C. Marois,
“Speckle noise and the detection of faint companions’,”
Publ. Astron. Soc. Pac. 112, 587 (1999).

7. J.-M. Conan, L. M. Mugnier, T. Fusco, V. Michau, and G.
Rousset, “Myopic deconvolution of adaptive optics images
by use of object and point spread function power spectra,”
Appl. Opt. 37, 4614–4622 (1998).

8. L. M. Mugnier, T. Fusco, and J.-M. Conan, “MISTRAL: a
myopic edge-preserving image restoration method with ap-
plication to astronomical adaptive-optics-corrected long-



2

3

3

3

3

A170 J. Opt. Soc. Am. A/Vol. 27, No. 11 /November 2010 Sauvage et al.
exposure images,” J. Opt. Soc. Am. A 21, 1841–1854 (2004).
9. D. Gratadour, D. Rouan, L. M. Mugnier, T. Fusco, Y. Clénet,

E. Gendron, and F. Lacombe, “Near-IR AO dissection of the
core of NGC 1068 with NaCo,” Astron. Astrophys. 446, 813–
825 (2006).

0. T. Fusco, G. Rousset, D. Rabaud, E. Gendron, D. Mouillet,
F. Lacombe, G. Zins, P.-Y. Madec, A.-M. Lagrange, J. Char-
ton, D. Rouan, H. Hubin, and N. Ageorges, “NAOS on-line
characterization of turbulence parameters and adaptive op-
tics performance,” J. Opt. A, Pure Appl. Opt. 6, 585–596

(2004).
1. J.-F. Sauvage, L. Mugnier, T. Fusco, and G. Rousset, “Post
processing of differential images for direct extrasolar planet
detection from the ground,” Proc. SPIE 6272, 62722B
(2006).

2. J. K. Wallace, J. J. Green, M. Shao, M. Troy, J. P. Lloyd, and
B. Macintosh, “Science camera calibration for extreme
adaptive optics,” Proc. SPIE 5490, 370–378 (2004).

3. A. Sivaramakrishnan, R. Soummer, L. Pueyo, J. K. Wallace,
and M. Shao, “Sensing phase aberrations behind Lyot coro-
nagraphs,” Astrophys. J. 688, 701–708 (2008).


