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ABSTRACT 

One of the primary scientific limitations of adaptive optics (AO) has been the incomplete knowledge of the point spread 
function (PSF), which has made it difficult to use AO for accurate photometry and astrometry in both crowded and 
sparse fields, for extracting intrinsic morphologies and spatially resolved kinematics, and for detecting faint sources in 
the presence of brighter sources. To address this limitation, we initiated a program to determine and demonstrate PSF 
reconstruction for science observations obtained with Keck AO. This paper aims to give a broad view of the progress 
achieved in implementing a PSF reconstruction capability for Keck AO science observations.  

This paper describes the implementation of the algorithms, and the design and development of the prototype operational 
tools for automated PSF reconstruction. On-sky performance is discussed by comparing the reconstructed PSFs to the 
measured PSF’s on the NIRC2 science camera. The importance of knowing the control loop performance, accurate 
mapping of the telescope pupil to the deformable mirror and the science instrument pupil, and the telescope segment 
piston error are highlighted. We close by discussing lessons learned and near-term future plans. 
 
Keywords: adaptive optics, point spread function reconstruction, Strehl ratio, laser guide star, segment piston error, non-
common path aberration, phase diversity, W. M. Keck Observatory 

1. INTRODUCTION 
W. M. Keck Observatory (WMKO) was the first to implement both natural guide star (NGS) and laser guide star (LGS) 
AO systems on a large telescope in order to achieve angular resolutions in the near-infrared that match the angular 
resolution of the Hubble Space Telescope at visible wavelengths. A total of 633 refereed science papers have been 
published through 2015 using the Keck AO systems. WMKO has endeavored to continually improve the capabilities of 
these systems. 
 
One of the challenges for AO science instruments is the limitations due to incomplete knowledge of the PSF making 
them difficult to use AO for accurate photometry and astrometry in both crowded and sparse fields, for extracting 
intrinsic morphologies and spatially resolved kinematics, and for detecting faint sources in the presence of brighter 
sources. The characteristics of the PSF vary with observing condition, instrumental parameters, and guide star properties 
and hence the need for PSF estimation for each science exposures. Moreover, the PSF depends on the position in the 
science field due to field dependent instrument distortions and anisoplanatism due to the difference in turbulence 
between the guide star and the science target. 
 
The goal of the PSF determination program at WMKO is to provide a PSF estimate for every point in the science field 
through post processing of the AO telemetry data taken in parallel with the science observations. The resulting capability 
of producing a high-fidelity PSF estimate will provide dramatic science gains and stands as one of the next major 
challenges for achieving further breakthroughs in high angular resolution science.  
 
The PSF determination efforts at WMKO can be broadly classified into two categories: on-axis and off-axis cases. In the 
on-axis case, the guide star is co-aligned with the science object. In the off-axis case the natural guide star (NGS) is 
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located within an ~30″ radius field around the science target for NGS AO and an ~60″ radius field for laser guide star 
(LGS) AO. Both the on-axis and the off-axis cases could use a NGS or a LGS. The off-axis LGS could be further 
divided into (1) tip/tilt NGS off-axis and LGS on-axis, and (2) tip-tilt NGS and LGS off-axis (the off-axis angle for the 
tip/tilt NGS and the LGS need not be the same). The on-axis PSF determination is led by WMKO with a sub-contract to 
the University of Applied Sciences Western Switzerland (Hes-so) and is funded by the National Science Foundation 
(NSF). The off-axis PSF determination effort is led by UCLA, including a sub-contract with the Optical Sciences 
Company, and is funded by the W. M. Keck Foundation. The NSF funding also supports designing an operational tool 
for PSF determination that would make use of both PSF determination efforts. More recently, we have initiated technical 
collaborations with Marcos van Dam at Flat Wavefronts, Luc Gilles and Lianqi Wang at the TMT, and Carlos Correia 
and Olivier Martin at LAM in validating the PSF reconstruction algorithm. This paper gives a broad view of the progress 
achieved in implementing this capability for Keck AO science observations, with a special emphasis to the on-axis NGS 
case and the work performed since our last update at the AO4ELT4 conference in October 2015 [1][2].   
 
The outline of the paper is as follows: The concept of the PSF reconstruction is briefly described in Section 2, core on-
axis algorithm development in Section 3, operational tool/facility development in Section 4, recent AO performance 
optimization/characterization relevant to PSF reconstruction in Section 5, highlights of the on-axis results in Section 6, 
off-axis algorithm development in Section 7, science verification plan in Section 8, and a brief summary and future plans 
in Section 9. 

2. THE CONCEPT 
The PSF is the response of an imaging system to a point source. The image of a complex astronomical object can be seen 
as a convolution of the true object and the instrumental PSF. There are several terms involved in defining the complex 
astronomical optical system and the uncorrected atmospheric turbulence.   
 
The approach taken at WMKO involves (1) computing the guide star PSF from wave front sensor (WFS) measurements 
using the technique introduced by Véran et al. [3] for a curvature WFS and modal correction AO system (PUEO on the 
CFHT), which is applicable to a Shack-Hartmann WFS and zonal correction system such as the Keck AO systems 
[1][2][4], and (2) computing the science PSF by applying anisoplanatic corrections to the guide star PSF using a 
modified version of the Arroyo software package written by Matthew Britton [5][6] and off-axis instrument 
characterization by the UCLA team [7]. 
 
Assuming that the residual phase is stationary over the telescope pupil, the long exposure Optical Transfer Function 
(OTF) can be written as the product of the instrumental OTF (telescope and instrument optics) and an OTF associated 
with the residual post-AO wavefront error, i.e. 
ܨܱܶ  = .௦௧ܨܱܶ  (1)																																																																																																												ைܨܱܶ
 
The long exposure PSF is estimated from the reconstructed OTF through an inverse Fourier transform. The OTFAO is 
related to the residual phase structure function, DAO (νλ) as follows: 
(ߣߥ)ைܨܱܶ  = exp	[− ಲೀ(ఔఒ)ଶ ]                                                                                         (2)   
 
The wavefront phase errors are assumed to be composed of complementary and orthogonal components, namely, 
controlled and uncontrolled modes. The residual errors of the controlled modes (tip/tilt and higher order or deformable 
mirror, DM, errors) are estimated from the AO control loop data, and the errors of the uncontrolled modes (fitting error 
and aliasing) are estimated through modeling of astronomical seeing knowing the instrument characteristics. i.e. ܦை(ߣߥ) = (ߣߥ)ெܦ (ߣߥ)்்ܦ	+ + (ߣߥ)ிாܦ 	+ ,(ߣߥ)ܦ and																																							(3)         ܦெ(ߣߥ) = 	 < ߝ ߳ > 	 ܷ  (4)																																																																																							(ߣߥ)
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The DM structure function is computed from the covariance of the WFS measurements using the Uij matrix. The fitting 
error is computed using a Monte-Carlo algorithm where instantaneous turbulent phase screens are generated, and 
projected on to the influence function basis made from an empiral model of the DM influence function. The projection is 
subtracted from the initial turbulent phase, and the instantaneous residual phase power spectral density (PSD) is 
computed. The procedure is run until a convergence is reached on the long exposure PSD. The structure function is then 
computed from the 2D correlation of the residual phase computed from the Fourier transform of the PSD. The final OTF 
is computed using Eq. 1 through 3. 

4. OPERATIONAL SOFTWARE AND COMPUTATIONAL FACILITY 
In addition to the core algorithm software, several tools have been developed at WMKO with the goal of transitioning 
the PSF demonstration project into a facility class operational tool. An initial version of the prototype operational tool 
was developed in the IDL environment through multiple scripts. In order to provide more stability, a database and a task 
scheduler were implemented subsequently as a part of the prototype. The effort involves (1) modifications to the AO 
telemetry archival process, (2) data management and workflow development (including a task scheduler, mySQL 
database, and an interactive web-based graphical tool), and (3) computational facility development (including storage 
disks/tapes and servers) [2].  
 
4.1 AO Telemetry Archival 

The telemetry recording system (TRS) records telemetry data on AO nights. Data is sampled at 10 MHz and saved to a 
PostgreSQL database. The amount of data stored in the database is large enough such that the database disk has to be 
cleared on a rolling seven day cycle. To preserve the telemetry data for a longer period of time and to reduce the disk 
space requirements, the data is selectively retrieved and transferred to disk storage as described below. 

A script retrieves and saves TRS data for the integration period of a given science FITS file. The script is started via a 
cronjob and runs daily. The script uses IDL routines to find the appropriate FITS files, verify that they are on-sky images 
and that the AO loops are closed, and then retrieve the TRS data. The retrieval of the TRS data involves querying the 
database through a C-interface to the PostgreSQL database. The processing tasks are currently running on a storage 
server. 

The cronjob starts at 8 am daily and the data extraction typically takes a few hours depending on the amount of science 
data collected the previous night.   
4.2 Data Management and workflow 

To facilitate the processing of archived and new data, a prototype software infrastructure has been developed to collect, 
ingest, monitor and manage the required science and telemetry data. PSF reconstruction (PSF-R) tasks are scheduled for 
processing immediately after ingestion into the system. A workflow control task dispatches the scheduled tasks to 
multiple hosts; depending on available resources up to 48 tasks can be executed in parallel. The task’s progress and 
status can be monitored and displayed via a web-based graphical tool, which can also be used to cancel tasks or select 
tasks for re-processing. The tools use MySQL, PHP and JavaScript database/language. These tools enable easy 
monitoring of the status of telemetry extraction and PSF-R processes, and enable easy rerun of telemetry extraction and 
PSF-R processes, if necessary. The concept of scheduling multiple tasks (one task per each science exposure) on 
multiple computers across the Keck network guarantees the completion of PSF-R of the science data from the previous 
night before sunset.    
 
4.3 Computational Facility and Data Storage 

The computational facility includes (1) the servers used for computation, and (2) the storage system to accommodate at 
least ~3 years of data readily accessible for PSF-R.  

The PSF reconstructions are performed on two computer systems in parallel across the internal network: (1) a virtual 
computer system in Linux environment, and (2) a dedicated storage server, a Linux host, that holds the AO telemetry 
data and some Keck Observatory Archive (KOA; [14]) data. 

The AO telemetry data collected during science exposures are archived to the PSF-R data storage system. Re-processing 
of the existing/old data may be required if the PSF-R application is modified and hence we would like to have the data 
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readily available online on the network. The storage requirement is ~ 10 TB/year/telescope to hold about 3 years of data, 
therefore a total of 60 TB total storage for Keck 1 and Keck 2. As the storage cost tends to go down with time, we started 
off with half this capacity.  

The nightly AO telemetry data are transferred to the storage disk before noon (HST) the following day. This provides the 
necessary time in the afternoon for lev0 data processing. We opted for an ASL Sovereign 4898SRT storage server with ~ 
33 TB of useable space. The 33 TB storage space is carved up into smaller volumes so that we can freeze the data and 
back it up to LTO-6 tapes for the offline storage requirement. A new LTO-6 tape drive has been procured and physically 
connected to the Sovereign 4898SRT server for data backup for disaster recovery purposes. The LTO-6 tape drive is a 
2.4TB non-compressed data storage device; therefore we have configured Network File System (NFS) storage volumes 
to be approximately 2 TB each. The goal is to be able to store a NFS volume on a single tape.  

5. AO PERFORMANCE OPTIMIZATION/CHARACTERIZATION 
We discuss some of the AO performance improvements being made to improve PSF reconstructions in addition to 
improving the image quality. A toolkit has been developed at WMKO to interface the core algorithm to the Keck 
software platform and to improve the accuracy of PSF-R. The software includes routines to (1) account for control loop 
delays and tip/tilt mirror dynamics (Section 5.2), (2) apply centroid gain corrections (Section 5.3), and (3) potentially 
measure high order static phase aberrations (Section 5.4).  
 
5.1 Telescope pupil registration to the DM and NIRC2 pupil masks 

The Keck telescope pupil was decentered with respect to the NIRC2 pupil masks by ~ 34 mm in x and ~ 478 mm in y on 
NIRC2 in telescope primary mirror space during the period most of the engineering data was taken. Additionally the 
telescope pupil nutated by ~ 159 mm peak-to-peak in the telescope primary space as the AO rotator rotates. A NIRC2 
pupil mask was therefore not used for PSF-R observations. Subsequently the K2 AO bench was realigned to accurately 
map the telescope pupil to the DM and the NIRC2 pupil masks. This is crucial to apply the algorithm to science 
observations typically taken using one of the NIRC2 pupil masks.      

5.2 Control loop delay verification and tip/tilt mirror dynamics update 

One of the uncertainties in the PSF-R has been incomplete knowledge of the mirror dynamics and loop delays. Our 
earlier attempts to verify and/or improve the control loop model parameters both from on-sky data and internal data have 
been inconclusive primarily due to daytime beam-train vibrations and residual turbulence in the case of on-sky data.  

More recently, the tip/tilt loop delays for different wave front sensor camera clocks have been validated through an 
internal test with carefully chosen intensity levels to have adequate measurement noise in the data; the data was also 
taken over the weekend to minimize vibrations from activities at the summit. We took telemetry data using the 
calibration source (SFP) and running the wavefront controller with different frame rates, programs and loop gains. These 
measurements were then compared with the modeled control law [15]. An excellent agreement is attained between the 
measured and modeled rejection transfer functions by modifying the model for the tip-tilt mirror dynamics. The updated 
model for the tip/tilt mirror dynamics on Keck II, obtained by trial and error, is as follows: ்்ܪெ(ݏ) = 	 2.55	 ×	10ଵ2.55	 × 10ଵ + 4.5	 ×	10	ݏ + 4	 ×	10ଷݏଶ +  ଷݏ

where s is the complex number frequency. A power spectrum of the tip/tilt residuals taken at 438 Hz with a very high 
loop gain of 0.7 using the artificial light source is shown in Figure 5. The measurements were taken at a low light level 
in order to be dominated by the measurement noise. The blue and red curves represent the rejection transfer function 
using the old and new tip-tilt mirror dynamics respectively. It can be seen that the new curve does a much better job of 
matching the measured power spectrum. 
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Table 2: Science Cases. 

Research Area Observable PSF 
parameters 

Observing 
Mode 

Science 
collaborators 

Dynamical mass 
measurements for Brown 

Dwarfs and Low-Mass Stars 
Astrometry FWHM (near) On-axis 

NGS/LGS 
M. Liu &  
T. Dupuy 

Planet search Astrometry FWHM & 
Strehl ratio On-axis NGS S. Ragland & 

B. Bowler  

Galaxy Morphology and 
Kinematics Morphology & Kinematics FWHM & 

Strehl ratio 
On-axis/off-

axis LGS S. Wright   

Stellar population in the 
Galactic center 

Astrometry, Photometry, 
Morphology & Kinematics 2D profile Off-axis LGS 

A. Ghez 

 

Gravitational lensing 
Astrometry, Photometry, 

Morphology & Kinematics 2D profile off-axis LGS T. Treu 

9. SUMMARY AND FUTURE PLANS 
The on-axis PSF reconstruction algorithm development is complete and the code is being tweaked to improve the 
performance. The reconstructed PSFs are compared with the sky PSFs in terms of FWHM and Strehl ratio. High level 
prototype operational tools to reconstruct on-sky NIRC2 PSFs have been developed and some initial tests were carried 
out.  

We find that accurate estimation of (1) atmospheric seeing (< 10% accuracy), (2) non-common path aberration, and (3) 
telescope segment piston error are essential for PSF-R. A well-optimized AO system with known control loop 
characteristics is also crucial for PSF-R. The ability to measure residual telescope piston error using the AO science 
instrument is beneficial for PSF-R as well as for the overall performance of the telescope for science operations.   

The next steps are: 

(1) Document the PSF reconstruction process in a series of journal articles.  
(2) Integrate off-axis components developed at UCLA and validate the algorithm with on-sky engineering data. 
(3) Conduct an operational tool design review. 
(4) Carryout science verification. 
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