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ABSTRACT

The advent of photonic integrated circuits (PICs) will allow the replacement of the large aperture of an optical
telescope by a dense array of small apertures combined interferometically. The light coming from aperture pairs
can be combined by a PIC in order to extract interferogram characteristics known as complex visibilities, from
which the observed object can then be reconstructed. In such a compact interferometric imager, the optical
components dedicated to image formation in a regular telescope are no longer necessary. In particular, such a
concept is relevant for space missions where weight and size are critical.

In this communication, we study such an instrument concept, focusing on signal-to-noise considerations. We
recall the design basis for the field and the spatial resolution, and we show that the spectral resolution must be
no less than the field to resolution ratio. Then, we analyze the signal-to-noise ratio of this concept, assuming
that each spatial frequency is recorded only once, and compare the signal-to-noise ratio with that of a monolithic
telescope. We perform the comparison in Fourier space for an identical number of recorded photons. We show
that the noise propagation of the interferometric imager is identical to that of a monolithic telescope that would
have a flat Modulation Transfer Function with a level roughly given by the ratio of the small apertures’ diameter
to the maximum baseline. We conclude that the noise propagation in low and medium spatial frequencies is
unfavorable for the interferometric imager.

1. DESCRIPTION OF THE SPIDER CONCEPT

The innovative optical imaging system concept based on interferometry known as spider∗1 could bring substan-
tial gains in size and weight compared to a conventional focal plane imager. This compact interferometric imager
concept combines the following ideas:

• replace a focal plane imager by an interferometer one may view as a reduced model of an astronomical
interferometer, which is illustrated Fig. 1a ;

• avoid the long-stroke delay lines of Fig. 1a by having the set of apertures on a common mount;

• use the technology of pics (Photonic Integrated Circuit) to realize in an extremely reduced thickness the
functions of phase shifting, beam coupling, spectral dispersion and detection, as illustrated Fig. 1b.

The concept of spider was presented in 2013,1 by researchers at Lockheed-Martin, and several preliminary
experimental demonstrations followed.3,4 Several aspects of such a concept have been studied since then.5–9 A
Si3N4 PIC demonstrator with 12 baselines and 18 spectral channels dispersed by an Arrayed Waveguide Grating
or AWG was then developed by Lockheed-Martin and UC Davis.10 The experimental laboratory demonstration
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Figure 1. a: principle of an interferometer (long baseline, delay lines, fibered combination); b: principle of spider (micro-
lens array, injection in a PIC that contains phase shifters, couplers, dispersing elements (AWG) and detectors). Illustration
taken from Ref. 2.

of the near-infrared SPIDER imager based on this PIC resulted in a publication in 2018,2 which is the most
comprehensive publication by these two teams.

The diagram in figure 1 shows that at their entry in the PIC, the beams in each guide meet first the phase
shifters, which must therefore be achromatic, then the couplers, which combine the apertures two by two, then
only the dispersive elements (AWG), and finally the detectors. The flux recorded by the detectors allows, via a
modulation produced by the phase shifters, to reconstruct the contrast and the phase of the interference fringes of
each pair of recombined apertures. The contrast and phase are grouped into a quantity called complex visibility,
which gives a sample of the Fourier Transform of the object via the Van Cittert-Zernike theorem. Then, the
object can be estimated through an image reconstruction, using a method among those developed in astronomical
interferometry.11,12

The telescope uses a large number of baselines to sample the complex visibility of the observed object on a
rather large number of spatial frequencies. Figure 2, taken from Ref. 2, shows the schematic diagram of such a
telescope.

Figure 2. schematic diagram of a compact interferometric imager (taken from Ref. 2).



2. PHYSICAL ANALYSIS AND BASIC DESIGN RULES
2.1 Field of view
The field-of-view (FOV) of an interferometric imager such as spider, as for any pupil-plane interferometer, is
limited to λ/D, where λ is the central wavelength considered and D is the diameter of the apertures. Moreover,
because of the injection in waveguides, the observed object is apodized by the “antenna lobe” in intensity L of
the waveguide into which the light is injected, so that the effective object whose complex visibilities are measured
by the interferometer is

oeff(αx, αy) = o(αx, αy)× L(αx, αy). (1)

Finally, we note that L is the intensity of the back-propagation towards the object of a pupil amplitude P , which
is the waveguide’s propagation mode in the aperture plane: L = |FT(P )|2. L is typically a Gaussian 2D function
of FWHM λ/D, as studied in details in Refs. 13,14. The FOV θfov seen by the instrument is thus:

θfov ≃ λ/D . (2)

2.2 Resolution and number of resolution elements
As for any interferometer, the maximum spatial frequency recorded by a compact interferometric imager is given
by the maximum distance separating two apertures, or maximum baseline Bmax, and is Bmax/λ. The angular
resolution of such an instrument is thus

r = λ/Bmax . (3)

The angular field being λ/D, the number of resolved elements of a compact interferometric imager in the
observable angular field is Bmax/D. For an object sampling fulfilling the Shannon-Nyquist criterion, this means
that the reconstruction will give an object on a support of side NShannon pixels given by:

NShannon = 2Bmax/D . (4)

2.3 Spectral width
The spatial frequency of the object measured for point-like apertures separated by B interfering at a wavelength
λ with zero bandwidth is B/λ. As soon as the bandwidth is non-zero, we record in the interferogram an average
of spatial frequencies of the object for all the wavelengths of the band. Therefore, what spectral bandwidth can
be tolerated?

To answer this question, it is useful to realize that Equation 1 means that even at zero spectral width, an
interferometer with waveguide injection intrinsically measures an average of spatial frequencies of the object over
a typical width of D/λ. Another way of picturing this is to see that the recombined beams contain interferences
between apertures of diameter D spaced by B and thus between pairs of points separated by distances ranging
from (B −D) to (B +D).

It is then reasonable to specify that the spatial frequency averaging due to the spectral width dλ is less
than the intrinsic averaging due to the non-zero aperture size. Differentiating f = B/λ we obtain the following
condition:†

df =
B

λ2
dλ < D/λ.

For the shortest wavelength and the longest baseline, this yields:

dλ

λmin
<

D

Bmax
. (5)

Inverting this inequality, we can also read it as follows: the spectral resolution λ/dλ must be greater than the
number of (spatially) resolved points of the interferometer, Bmax/D.

†Interestingly, this condition can also be obtained by examining the temporal coherence, and specifying that the opd
between two apertures separated by B for a direction θ = λ/(2D) at the edge of the field of view, which is opd = B.θ =
Bλ/(2D), must be less than half the coherence length Lc = λ2/(dλ).



3. PHYSICAL MODELING FOR PERFORMANCE ESTIMATION

3.1 Data model
Let us consider a pair of apertures separated by B and thus measuring the spatial frequency (u, v) = B/λ, and
let us call C1 (respectively C2) the coupling coefficient of aperture 1 (respectively 2) towards the output. Let
ϕk be the modulation phase of the k-th measurement, and Nph the mean number of photons received in each of
the two apertures; then, assuming balanced channels i.e., C1 = C2 = 1/

√
2, a model of the recorded raw data

(intensities) is

i(u, v, ϕk) = Nph {1 + |γ(u, v)| cos[ϕk + θ(u, v)]} , (6)

where the complex visibility of the observed object is:

γ(u, v) = |γ(u, v)| exp(jθ(u, v)) . (7)

By using typically four measurements (ϕk = (k− 1)π/2, for k ∈ {1, 2, 3, 4}) followed by a demodulation‡, one
obtains a complex measurement y(u, v) proportional to the mean number of photons received in each of the two
apertures and to the complex visibility of the object at the measured spatial frequency:

y(u, v) = Nph |γ(u, v)| exp(jθ(u, v)) = Nphγ(u, v) . (8)

Although it does not change the global photon budget, here we assume that (only) two raw measurements are
obtained simultaneously using the two outputs in phase opposition of each coupler. Two other measurements
must then be obtained by introducing a phase shift of π/2. Each complex measurement thus uses 4Nph photons
(2 raw interferometric measurements, each receiving Nph photons per aperture).

Finally, let us linger for a moment on the flux of this o object, which can be reconstructed from the complex
measurements y(u, v) above. We have:

γ(u, v) = õ(u, v)/õ(0, 0) (9)

thanks to the Van Cittert-Zernike theorem, so γ(0, 0) = 1. Equation 8 then yields y(0, 0) = Nph, i.e., the
collection y of complex measurements y(u, v) is a set of samples of the Fourier transform of an object o, of
integral (i.e., of total flux) Nph: ∫

o(x, y) dxdy = õ(0, 0) = Nph . (10)

3.2 Noise modeling and comparison with a conventional imager
A complete physical modeling of the compact interferometric imager concept must include the modeling of noise,
and if possible comparatively to a classical i.e., focal plane imager. The propagation of noise in the algorithm
that reconstructs the object from complex visibilities is delicate because these algorithms can be notably non-
linear. In order to avoid dealing with such noise propagation, we have chosen to model the noise of a compact
interferometric imager and of a classical instrument in the Fourier i.e., spatial frequency domain.

We assume in the following that the measurement noise is predominantly photon noise, which is reasonable
for many scenarios at least in the visible and near-infrared. In the noise analysis, we additionally assume that
the compact interferometric imager measures each spatial frequency only once, as in Ref. 15.

‡For each spatial frequency (u, v), the demodulation consists in estimating y(u, v) as: ℜ(y(u, v)) = (i(u, v, ϕ1) −
i(u, v, ϕ3))/2 and ℑ(y(u, v)) = (i(u, v, ϕ4)− i(u, v, ϕ2))/2.



3.2.1 Noise modeling for a compact interferometric imager

For a compact interferometric imager, the variance of the noise on the complex measurement y(u, v) of Equation 8,
resulting from the demodulation of four raw measurements given by Equation 6, is§:

σ2
y(u, v) = Nph, (11)

where Nph is still the average number of photons received in each of the two apertures contributing to the
interference during a raw measurement. This directly follows from the fact that y(u, v) is the demodulation of
4 raw data measurements, where each is corrupted by photon noise, of variance Nph under the assumption that
|γ(u, v)| ≪ 1.

The standard deviation of these complex measurements, normalized by the object’s Fourier transform at the
zero frequency, is therefore simply, according to Equation 10:

σy(u, v)

õ(0, 0)
=

1√
Nph

. (12)

The set of spatial frequencies to be measured to cover the same frequency support as a conventional imaging
instrument of the same resolution, i.e., of diameter Bmax, is contained in a half-disk of radius Bmax/λ, that is
to say of the order of π(Bmax/D)2/2 distinct frequencies, if the frequency sampling step is D/λ (which requires
joint apertures).

The measurement of all these spatial frequencies therefore takes a total of π(Bmax/D)2/2× 4Nph photons:

Nphtot = 2π(Bmax/D)2Nph. (13)

3.2.2 Noise modeling for a conventional imager

For a classical imaging instrument, we additionally assume that the observed scene is of sufficiently homogeneous
luminance, so that the noise can be assumed to be stationary, i.e., so that the variance of the noise of the classical
imager σ2

n can be assumed to be approximately constant over all Npix pixels. The discretized object that yields
the recorded digital image i′ is noted here as o′ to distinguish it from the object in the compact interferometric
imager model, since the total flux of o′ is different:∑

p,q

o′(p, q) = Nphtot, (14)

where Nphtot is the total number of photons received (on average) during the recording of the image i′. The
image model writes:

i′ = h ⋆ o′ + n, (15)

where h is the discrete PSF, and ⋆ is the discrete convolution operator.

We restore this object, whose prior law is taken second order stationary and with Energy Spectral Density
(ESD) So, by a Wiener filter. We then examine the propagation of the image noise on the discrete Fourier
transform (DFT) of the restored object ô, where the DFT of an image x is defined as:

[DFT(x)] (p′, q′) =
∑
p,q

x(p, q) exp(−2jπ[p.p′ + q.q′]/Npix), (16)

§The variance of the complex variable y can be defined as Var(y) ≜ E(|y − E(y)|2), and it is easy to show that
Var(y) = E(|y|2) − |E(y)|2 = Var(ℜ(y)) + Var(ℑ(y)). If moreover, as we can reasonably assume in this study, ℜ(y)
and ℑ(y) are two independent Gaussian variables of the same variance, then y is a complex circular Gaussian variable
(distribution invariant by any rotation).



without a factor 1/N2
pix (as in some languages, e.g., IDL), and noted Fx in matrix form. Let ϵ = ô′ − o′ be

the restoration error of the object, we show in appendix A that the covariance matrix of the DFT of this error,
noted ΓFϵ, is diagonal and given by:

ΓFϵ = diag

 N2
pixσ

2
n

|h̃|2 + N2
pixσ

2
n

So

 . (17)

The interpretation of Equation (17) is easy: the numerator represents the variance of the noise in the image DFT
at any frequency so in particular at zero frequency, and this variance is therefore the sum of the variances of the
noise on all pixels, i.e. N2

pixσ
2
n. The denominator represents the amplification of the noise by the restoration and

its form is reminiscent of the Wiener filter: FTM squared plus the ratio between the variance of the noise in the
image DFT and the object’s ESD. Finally, the fact that the ΓFϵ matrix is diagonal means that the restoration
error is decorrelated in the Fourier domain between spatial frequencies, which comes jointly from the stationary
character of the noise and the stationary prior probability distribution of the object.

Since we have assumed the photon noise to be dominant, this can further be written as:

ΓFϵ = diag

(
Nphtot

|h̃|2 + Nphtot
So

)
. (18)

In particular, at spatial frequencies for which noise is not dominant, we see that the variance of the restoration
error in the Fourier domain is simply equal to the variance of the noise in the DFT of the image divided by the
MTF squared. In other words, the noise in the Fourier domain is, in standard deviation, simply amplified by
the inverse of the MTF. By normalizing this standard deviation by the DFT of the object at zero frequency, we
obtain, at spatial frequencies for which signal dominates noise:

σFϵ

õ′(0, 0)
≃ 1

|h̃|
√
Nphtot

. (19)

3.2.3 Comparison

To compare the noise propagation between a classical imager and a compact interferometric imager, we will
assume that the classical imager receives Nphtot photons in a single image, where Nphtot is given by Equation (13),
so that Equation (19) can be re-written this way:

σFϵ

õ′(0, 0)
=

1√
2π |h̃| (Bmax/D)

√
Nph

. (20)

Comparison of Equations 12 and 20 suggests that the noise propagation is similar for both types of instruments,
i.e., proportional to 1/

√
Nph, and that it is identical if:

|h̃| = 1√
2π

D

Bmax
, (21)

at all frequencies except the zero frequency, at which the MTF is 1 by convention. In other words, with respect to
noise propagation, a “standard” compact interferometric imager (standard in the sense that each spatial frequency
would be measured once and only once) is equivalent to a conventional imager with a flat MTF of the order of
D/Bmax, i.e., the inverse of the number of apertures in the maximum baseline of the instrument

This result can also be rephrased as follows: the compact interferometric imager studied here is equivalent,
with respect to noise propagation, to a focal plane multi-aperture imaging instrument with an aperture that is
a phased array of non-redundant apertures, and comprising approximately

Ntel =
√
2πBmax/D (22)



apertures. Indeed we know that, for an ideal non-redundant phased array instrument, the MTF is flat and equals
1/Ntel, where Ntel is the number of sub-apertures.

Finally, the above results show that, for the highest spatial frequencies, a compact interferometric imager
and a conventional imaging instrument have a very similar behavior with respect to noise. For the former, the
propagation of noise is unfavorable for the lower frequencies. However it is quite possible, for a particular task
(detection for example), to design the transfer function of a compact interferometric imager to make it higher at
the spatial frequencies relevant to the task.

4. CONCLUSION
In this paper, we performed an analysis of the compact interferometric imager concept. We recalled basic rules
for the field of view and the resolution, and gave a sizing rule for the spectral channel width of such an instrument:
the field of view is limited to the diffraction spot of an aperture, the resolution is given by the maximum baseline
of the instrument, and the relative spectral width of a channel must be less than the ratio between the size of
an aperture and the maximum baseline.

We then modeled the propagation of the measurement noise in a compact interferometric imager and we were
able to compare this propagation to that of a focal plane imaging instrument after restoration by an optimal
linear filter (Wiener). We performed this analysis within the framework of an identical photonic budget for the
two types of instruments, in order to obtain a fair comparison.

This analysis allowed us to show that the noise propagation was, for a compact interferometric imager
recording each spatial frequency once, very similar to that of a multi-aperture focal plane imager with maximum
resolution (or minimum redundancy),16 i.e., with a quasi-flat transfer function.

Much work remains to be done to fully demonstrate the feasibility of the concept from a technological point of
view. On the algorithmic side, an interesting avenue to explore is the reconstruction of the observed scene from a
hybrid instrument17 consisting of a conventional small telescope recording a continuum of low spatial frequencies
complemented by a compact interferometric imager recording a set of discrete high spatial frequencies.

APPENDIX A. ERROR COVARIANCE MATRIX FOR THE WIENER
RESTORATION OF AN IMAGE

In matrix form, the image model writes:
i′ = Ho′ + n, (23)

and the object restored by an optimal¶ linear estimator writes ô′ = Wi′, with:

W =
(
HTC−1

n H +C−1
o

)−1

HTC−1
n in the so-called information form, (24)

or
W = CoH

T
(
HCoH

T +Cn

)−1

in the so-called covariance form. (25)

This estimator has a zero mean bias. The covariance of the error ϵ ≜ ô′ − o writes:

Γ =
(
HTC−1

n H +C−1
o

)−1

. (26)

Let F be the matrix performing the DFT, defined in Eq. 16. Let MH be the conjugated and transposed matrix,
also called Hermitian conjugate or adjoint matrix, of a matrix M . The inverse DFT, in order to ensure that
F−1F = FF−1 = I, is normalized in the following way: F−1 = (1/N2

pix).F
H . The covariance matrix of the

DFT of the error, referred to as ΓFϵ, is given by:

ΓFϵ = FΓFH = N2
pixFΓF−1, (27)

¶in the sense of a minimum mean square error, which also happens to be, under Gaussian hypotheses, the Maximum
A Posteriori estimator.



thus
Γ−1
Fϵ =

1

N2
pix

FΓ−1F−1 . (28)

According to Equation 26, we have:

Γ−1
Fϵ =

1

N2
pix

F
(
HTC−1

n H +C−1
o

)
F−1

=
1

N2
pixσ

2
n

FHTHF−1 +
1

N2
pix

FC−1
o F−1

=
1

N2
pixσ

2
n

FHHF−1 FHF−1 +
1

N2
pix

FC−1
o F−1 (because H is real-valued)

=
1

N2
pixσ

2
n

(FHF−1)H (FHF−1) +
1

N2
pix

(FCoF
−1)−1

=
1

N2
pixσ

2
n

(FHF−1)H (FHF−1) + (FCoF
H)−1 . (29)

Because matrix H expresses a convolution, it is a Toeplitz-block-Toeplitz matrix, and thus approximately a
circulant-block-circulant matrix. It is thus diagonalizable by a DFT with a good approximation, and its eigen-
values are values of the transfer function, h̃:

H̃ ≜ FHF−1 = diag
(
h̃
)

. (30)

Besides, assuming that the object’s prior probability distribution is second order stationary with Energy Spectral
Density (ESD) So, the prior covariance matrix of the DFT of the object is also diagonal, and this diagonal is
equal to So:

S̃o ≜ FCoF
H = diag (So) . (31)

Using Equations 30 and 31 and injecting them into Equation 29 yields:

Γ−1
Fϵ =

1

N2
pixσ

2
n

diag
(
|h̃|2

)
+ diag

(
1

So

)

= diag

(
1

N2
pixσ

2
n

|h̃|2 + 1

So

)

= diag

(
1

N2
pixσ

2
n

[
|h̃|2 +

N2
pixσ

2
n

So

])
, (32)

and finally:

ΓFϵ = diag

 N2
pixσ

2
n

|h̃|2 + N2
pixσ

2
n

So

 , □ (33)

as announced in Equation 17.
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