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ABSTRACT

The on-orbit identification of the transfer function (TF) @kpaceborne optical telescope is useful for the acceptantef
the instrument, for the on-orbit refocusing and for theaestion of the recorded images. An original method is preskto
perform such an identification from a single image. Itis blam@a physical modeling of the Tathe optical aberrations of the
instrument, and on the automatic extraction of sub-imagesaining patterns that can be described with few parasetey.
step functions. The estimation of the TF is performed by mining a least-square criterion incorporating all exteacsub-
images, as a function of the unknowns, which are the abensfnd the step parameters. Aliasing is explicitely inomaged
in the image modeling, so that the transfer function can bmated up to the optical cutoff frequency. The method igdeed
first on simulated images of step functions, then on a réglishdersampled and noisy simulated image.

Keywords: wavefront sensing, optical transfer functions, remotesis® deconvolution, image restoration, inverse problems
telescopes.

1. INTRODUCTION AND PROBLEM STATEMENT

The on-orbit calibration of the transfer function (TF) of paseborne telescope may be performed using resolutioatsarg
but this reduces the time available for observations. Mithwt needing the acquisition of such special purpose image
thus preferable. Yet, estimating the TF from a single image difficult problem, as both the TF and the object are unknown
Additionally, in real-world instruments, the images aré¢ aoly noisy but also undersampled, so that the TF estimationbe
biased by aliasing effects.

The recorded imageis modeled as the noisy sampled convolution of the obserbgeto (Earth scene) with the instru-
ment’'s PSFh:

= [h*O]HI+n7 (1)
where[-];; denotes the sampling operator. This model is adequateasitpeecewise in the image, for satellite imaging.

The problem at hand is to estimate the RSBr equivalently the Th= FT(h)) from the image and our prior knowledge
on the instrument. Indeed, because we are concerned withibdincalibration, the instrument is partially known eitlieom its
detailed opto-electronic design or from ground calibmadiprior to launch. Hence we assume that parameters sucé lasgtér
central obscuration, the detector transfer function (DHRY the ratiof;/ f, of the optical cutoff frequency to the detector’s
Nyquist frequency, are known.

One is interested in a precise characterization of the tweedsional (2-D) TF, especially in the high frequency damai
Such a characterization is useful for the acceptance téseaohstrument, for the on-orbit refocusing and for theoestion of
the recorded images. As most real-world instruments arergadpled, estimation of the high frequencies of the instmnt
response should explicitly model the aliasing.

This problem is akin to blind deconvolution, as both the objnd the instrument are unknown. However, BD aims
at restoring the object while the method proposed hereirs @itre precise characterization of the OTF of the instrument.
Therefore, BD usually considers the TF characteristicsuésance parameters and uses simple spatial-domain mddéls o
aliased instrument’s response (with exceptions, notdtdyapproach of Schulz and Can

Another difference between the method proposed here anceBiDes in the type of processing performed on the image.
In BD, the whole image is processed in order to yield an eséraithe TF; this processing either consists in a joint estiiom
of the TF and the object, or in a marginal estimation of the gdt, for instance in a maximum likelihood framework. In
both cases the object model (by, e.g., a Markov random figlgniany unknown object parameters (usually pixel valudsd. T
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main problem of BD is to avoid confusions between the objedtthe instrument : for instance a smooth edge in the image
can be the result of a smooth object edge seen though a higlaties instrument or of a crisp object edge smoothed by a low
resolution instrument.

Consequently, unless some additional prior knowledge adae on the object (e.g., it is a star field) and/or on the TF
(e.g., through an optical parametric model), the TF esgrngbften imprecise in the BD context.

Our approach is closer to conventional calibration on ragm targets. Indeed, we focus the estimation on partsef th
image which can be viewed as opportunistic resolution targad which can be described by simple parametric models,
e.g., step functions, similarly to Ref$.and5. We propose to use a physical modeling of the TF: it is pararizetd by the
optical aberrations of the instrument expanded on (a lunitember of) Zernike polynomials, as first proposed for thed@D
turbulence-degraded imagesMoreover, we explicitly take aliasing effects into accoumour image model.

Section2 is devoted to the principle of the TF estimation method frosetof selected sub-images. Sectbvalidates the
estimation method by means of simulations. Sedcfidiscusses the automatic selection of suitable sub-imagesthe whole
image. Sectiom illustrates the performance of the complete extractios pltimation process on a realistic simulated image.

2. TRANSFER FUNCTION ESTIMATION
2.1. Instrument model

The instrument is assumed to be partially known. ItshTiE modeled as the product of the known Diiige; with the optical
transfer function (OTFhgpt: o B
h= hopt X hyet 2

The OTF is modeled through the aberrations (or phédr)the instrument’s pupilexpanded on the first Zernike polynomials

Z:
11

o(cy) = 3 Az (xy) 3)
=4

Indeed in a space telescope there are essentially low drdenagions, which we here limit to Zernike polynomidls(defocus)

to Z31 (spherical aberration). The unknown of interest is the OtiRRtlhese aberrations allow us to parameterize the lattér wit
few, physically meaningful coefficients. Assuming that spectral bandwidth is small compared to the central waggherthe
OTF is related to the aberrations in the pupil through

Fopt = FT (IFT-1(P(x.y) ) 2) (4)

whereP is the pupil (or aperture) function, and FT denotes the Fodransform. Lastly, the rati&;/ f, of the OTF’s cutoff to
the detector’'s Nyquist frequency is assumed to be knownydlhtle taken as 1 or 2 in the following.

2.2. Considered sub-images: linear features

The TF estimation is performed on sub-images which shoule hshigh frequency (HF) content, accept a simple parametric
model, and be sufficiently numerous in an image to lead tosoresble statistical contrast. Linear features such aarliegges
meet all these conditions and are often used in instrumdibtagon.

Let us recall some basic properties of linear features, lware known as the Radon or “Fourier slice” theorem and will be

used in the following to reduce the computational burdemefdriterion to 1-D computations. A linear feature with otagion

6 and profilep is a 2-D object whose radiometry takes the foofx,y) = p(—xsin6 + ycosh), i.e, is invariant along the
direction®. It is trivial to show that the FT of such a feature lives on diahline of orientatior® + 11/2 of the Fourier plane,
with a complex amplitude which is the 1-D Fourier transforithe profilep. Thus the image of a linear feature throud@hié a
linear feature too, which results from the spreading of aagenprofile along the directidh Additionally, this image profile is

in turn the 1-D convolution of the object profifewith a unique 1-D respondg called the linear spread function (LSF). Lastly,
the LSF is the 1-D inverse Fourier transform of the cut of tHa ®ansfer function along the radial line of orientati®s- /2.

Here we focus on linear features whose profile is a step fonciihese features are described by four parameters, asshow
in Fig. 1. Other linear features, such as double step functions,s&@ in Bone®t al.> and could be used here as an extension
of the following developments.
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Figure 1. Parameters of a step function: position and orientatidt) (leeight and offset (right).

2.3. Principle of the transfer function estimation

We start with a set oK sub-imagess, ..., ik, ...,ik , whose supporic may be very different. These sub-images each corre-
spond to an object which is assumed to be a step (or Heavyfsitietjon. This object, denoted hi, is fully characterized by
its orientationBy, its distance to the origidy, its heightay and its lower value (or offsefk, as illustrated on FigL.

Because the estimation of the OTF boils down to that of thediserrations, we shall denote the PSFfa }1,). The
estimation is performed by minimizing a least square daterwhich is non-linear in the aberrations:

K

J({a} {8 deaBd) =5 Y lik(p.a) — h({a}iZa) x o(B, o, ok, BI(p, )% (5)
k=1 (p,a)€

This criterion measures the discrepancy between the sapemodelsh o] ; and the sub-imageg extracted from the
recorded imageé In the case of a stationary white Gaussian noise, which éasonable approximation for satellite imaging,
minimizing this criterion is equivalent to searching for aximum likelihood solution.

2.4. Minimization of the criterion

The criterion is minimized jointly in all parameters, whiate the aberrations and the object parameters, globallgiifsub-
images.

An essential step of the minimization of the criterion isdtsmputation, which is essentially that of a sub-image model
[hx o] for the current parameters. The computatior @ easily performed by using eqs) @nd @) and by replacing the
FT by an FFT in the latter.

We use the properties of linear features recalled in subese2.2 to compute a sub-image model for a linear edge of
orientationd through the following steps:

. cut of the transfer function in the directin-11/2 (6(° on Fig.2 (a)),
. zero-padding of the cut (s€db)),

1

2

3. inverse FFT leading to an interpolated Ligksee2 (c)),

4. numerical integration of the LSF to obtain the step imawédilp (see? (d)),
5

. spreading along directidhof the step image profile oriented along directfn 11/2 (se€ (e)).

The minimization is accelerated both by analytic consiti@na and by reasonable approximations. Firstly, the rioite
is quadratic in anydy,Bk), so that it can be minimized analytically in these variabkes a function of the other unknowns.
Secondly, we have checked that the an@lesan be estimated precisely without knowing the aberratioaswith a perfect
PSF. To do this, we minimize criteriah of Eg. () as a function of all(6y,dx) for null aberrations. One notices that the
minimization can be performed separately on each variadilg @, dx) because each only appears in kit term ofJ.

Thanks to these considerations, the criterion to be mirgththen only contains the variables of intel@ghat are related to
the OTF, and the distancdg. Indeed, these must be re-estimated because they code &tethpositions, which depend on the
shape of the PSF. The minimization is achieved by means d?theell method, which does not need the analytic expression
of the criterion’s gradient.
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Figure 2. Computation steps for the sub-image model of a linear edgeofcthe transfer function (a), zero-padding (b),
inverse FFT leading to an interpolated LSF (c), numericgration to obtain the step image profile (d) and 2-D sprendf
this profile (e).

3. VALIDATION OF THE ESTIMATION METHOD ON SYNTHETIC IMAGES

A first validation of the method was to estimate the OTF on isnges that were computed exactly as the sub-image models
used for the estimatiomng., by making use of the Radon theorem mentioned above; thiésesa very good, but probably not
representative of the estimation quality attainable onemealistic images.

In the following, the sub-images are 3232 and computed by the discrete convolution of an oversaimgect with an
oversampled PSF, which approximates a continuous cotwnland is then sampled appropriately. Thus, a simulated sub
image is not computed in the same way as the correspondingrage model during the estimation. This aims at validating
the robustness of the estimation with respect to small niglekrors and at preparing the validation on more realistages
such as the one presented in SecfiokVe present results obtained with two sets of sub-imagedirst one is obtained with the
Shannon sampling raté/ f, = 1) while the second one is obtained with a more realistic tsadepling of a factof;/ f, = 2.

The OTF is defined through the 8 first Zernike polynomials;aberration coefficients are given in Talll@and make up
a total phase variation off28rd RMS. The linear central obscuration is 26%. The DTF is ¢fiea CCD detector and takes
into account the temporal integration along the sateltdek. The global transfer function and its two (optical arededtor)
components are represented on Big.

Coefficient ay as ag ay ag ag a0 a
Name defocus astigm. x | astigm.y| comax| comay | triang.comax| triang. comay| spherical
Radial order 2 2 2 3 3 3 3 4
Value (rd) | 2m/(8v/5) | —2m/(8/5) 0 0 |2m/(8V5) 0 2r/(8v5) | —2m/(8/5)

Table 1. Aberration mixture used to compute the OTF (noter/(Bv/5) ~ 0,35rd). The total optical path difference is thus
A/8.

We first present simulation results with noiseless images.ff/ f, = 1, even with only two sub-images oriented at 0 and
9(”, the estimated transfer function is very good in these does, as illustrated in Figl. It is very poor in other directions,
with a maximum error of 3; this illustrates the fact that each sub-image of a stepiges information in one direction,
perpendicular to the step. When the number of sub-imagesdses while the steps’ orientations diversify, the estonat
quickly improves.

For fc/fn = 2, two sub-images oriented at 0 and®3fb not suffice to obtain a good transfer function estimatéhesé
directions, as illustrated in Fidy; the maximum error on the 2-D transfer function id®, in particular, the latter is poorly
extrapolated abové,. This is expected, as the orientations of the sub-image®tallow distinguishing between aliased high
spatial frequencies and low spatial frequencies. As sodineasteps’ orientations diversify, the estimation quidkiproves; in
particular, Fig6 showsx andy cuts of the transfer function estimate obtained for foursohges of edges oriented every’45

Tables? and3 summarize the transfer function estimation results for, faor and eight noiseless sub-images, with regularly
spaced orientations, fdg/ fn, = 1 andf/ f, = 2 respectively. In particular for eight sub-images the mmaxn estimation error
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Figure 3. Transfer functions used for the simulations, obtained adumt of the optical TF by the detector TF, fiy/f, =1
(a) andfc/fn = 2 (b). Profiles along in solid line, alongy in dashed line.

over the whole spatial frequency domain i§10-2 and 073102 for f./f, = 1 andf./f, = 2 respectively. The fact that the
error in the undersampled case is about twice smaller th#meilshannon-sampled case can be attributed to the fachthat t
transfer function itself, at medium to high frequencieghsut twice smaller in the undersampled case, due to the DTF.

We now consider eight sub-images with the same orientatisiadove, and assess the robustness of the method withtrespec
to noise. For this purpose, the sub-images are degraded agditive stationary white Gaussian noise of standard tienia
on, and the transfer function is estimated from these eighiimaiges. The considered valuesaf are 1%,v/10~ 3% and
10% of the image maximum value. The first value is typical oEanth observing telescope, the second one is a quite noisy
case and the third is an extreme case.

For f./fn = 1, up to a value 06, = 3%, the estimation quality remains almost constant and #edmum error remains
below 2% (see Tablé); for 10% noise, the error becomes very important and mobeirmages would be needed to reach a
reasonable maximum error value.

For fc/fn = 2, the estimation quality is about the same dar= 0% ando, = 1%, and is below 1%. The error starts off
sooner than foff./ f, = 1, i.e., from o, = 3% on, because an aliased PSF is coded with less pixels tfarneatty sampled one
so that, again, more sub-images would be needed to reachanedde maximum error value.

# of sub-images 2 4 8
Maximum errorf 1310 2| 1.810 2| 151072
MSE 3510°4] 0.47102| 0.4010°%

Table 2. Maximum error and mean-square error (MSE) on the transfestion estimation for two, four and eight noiseless
sub-images with correct sampling.

# of sub-images 2 4 8
Maximum errorf 1610 2| 0.8710 2] 0.7310°2
MSE 3.2102[ 0.19102| 0.17102

Table 3. Maximum error and mean-square error (MSE) on the transfestion estimation for two, four and eight noiseless
sub-images undersampled by a factor 2.
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Figure 4. Profiles of the estimatedr{+) and true (— along, ——— alongy) transfer functions from 2 noiseless 3232

sub-images with correct sampling. Left: real part; rightaginary part.
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Figure 5. Profiles of the estimatedr{+) and true (— along, ——— alongy) transfer functions from 2 noiseless 3232

sub-images undersampled by a factor 2. Left: real parttrrigiaginary part.
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sub-images undersampled by a factor 2. Left: real parttrrigiaginary part.
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On 0% 1% 3.2% 10%
Max. error | 1.5102[1.4102]1.6102(7.610°
MSE 0.40102|0.3610°2[0.53102|2.110°%

Table 4. Maximum error and mean-square error (MSE) on the transfastion estimation for eight sub-images with correct
sampling, for several noise levels. The noise is statiomdrige Gaussian, with a standard deviation of 0%, 3%4,0% and
10% of the image maximum value respectively.

On 0% 1% 3.2% 10%
Max. error [0.7310°2]0.79102] 22102 | 4.2102
MSE 0.1710°2(0.1910°2(0.4810°2/0.8510?2

Table 5. Maximum error and mean-square error (MSE) on the transfestion estimation for eight sub-images undersampled
by a factor 2, for several noise levels. The noise is stationhite Gaussian, with a standard deviation of 0%, 1#40% and
10% of the image maximum value respectively.

4. AUTOMATIC EXTRACTION OF THE SUB-IMAGES

The extraction is achieved in two steps. The first step is tapiaeessing of the whole image, designed to detect theaelev
features and to minimize the rate of missed features; thenskestep further checks the sub-images for consistencythéth
linear model and aims at minimizing the rate of false alarms.

4.1. Detection step

We use a standard edge detecier, Deriche’s implementation of the Canny detectimlowed by a polygonalization step, in
order to extract linear edges in the image. We then seleeinsafes around edges whose extensions both along the step an
orthogonally to it are greater than the assumed PSF diameter

Then we use a region growing segmentation starting on bd#s sif the selected edges to extract the two regions adjacent
to the edge and to compute their mean valogamy and standard deviatiorss,s,. Then we select the high-contrast edges
bordering uniform regions according to the following cribe:

My —mp| > 2xmax(sy, ).

4.2. Selection step

The second step further checks the sub-images for consysiéth the model of a convolved and noisy step function. Bigep
is akin to sub-pixel localization of edges, as already nateRlef. 5.

Each sub-image is rotated by bi-cubic interpolation so tih@tedge is aligned with the vertical axis, using the origoa
given by the polygonalization step. Then two tests are coteduon the resulting (horizontal) profiles. Firstly, theigdons in
each profile near both ends should be consistent with thedrB&R. The sub-image is rejected if these variations areeabov
20n.

Secondly, the central part of the profiles should be esdgnsampled and shifted versions of a unique perfect profile,
except for the noise. The shifts results from the fact thatdhientation of the feature is only approximatively knoveribas
stage: an orientation error results, to the first order, ine@akly growing shift along the edge. We identify sub-pighifts for
each profile by a least-square fit. This fit is performed by expay iteratively the interpolation formulae to the firstier,
similarly to standard motion estimation techniques. Assailitethe profiles are precisely aligned with the verticaaR linear
regression step is then conducted on the vector of shiftsh uegression accounts for the already mentioned orientatror.
The rejection test is conducted on the residual shifts: tieimage is rejected if the residual shift standard desteis above
a given threshold. Illustrations of this rejection procassgiven in Fig7.
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(@) (b)

Figure 7. (a) sub-image with a “bump” and the linear edge detectedarfitht step: note the position and orientation errors of
the detected edge; (b) mean residual shift of the profilea fasction of the coordinate along the edge): the large lasicih
around coordinate 18 is a signature of the bump and leadssjection.

4.3. Discussion

Such a two step detection/recognition scheme is classigaitiern recognition and can also be found in Refn this reference,
the first step is based on the Hough transfotodetect linear features which can be either single or aostdps. Here, the
proposed detection step is tailored for single step deteciihe second step of Réfrelies on polynomial fit and is adapted to
the large ratiof./ f,, of Spot images, but could fail for moderate undersampling.

The two main parameters for sub-image extraction are thed®feter in pixel, which is inversely proportional to théoa
fc/ fn, and the signal-to-noise ratio (or more generally the atégl statistical characteristics of the noise). A diffitbleshold
to adjust is the threshold for the rejection based on thelpsdfiesidual shifts: it should depend dg/ f,, on the SNR and
on the length of the segment. This relationship is curresthpirically defined. The extraction process has been ssitilys
tested on synthetic images for different noise variancedantwo values off;/f, (1 and 2).

5. VALIDATION OF THE GLOBAL METHOD ON A REALISTIC IMAGE

We have used an aerial 1626.696 metric image of the Grenoble regi@g@IGN) to generate the object. We could not use the
original image itself as an object; indeed, this image wesaaly somewhat smooth because of its acquisition procestheS
object was taken as a segmented version of this originalémadh gray levels given by the mean level of each region, and
piecewise-linear edges.

A 424 x 424 Am resolution image of this object is obtained by discrinvolution (see the discussion in S&tand
undersampling ./ fn = 2). The PSF is the aliased PSF corresponding to Figh), and the standard deviation of the added
noise is 1%, or 55 gray levels.

Figure8 shows the image and the detected edges, before the seletgmrand Figuré shows the 11 sub-images resulting
from the extraction (detection and selection). The restihe transfer function estimation is presented in Hi§. The
maximum error is 102, and is only reached for frequencies for which no sub-imageiges information.

These results show that a precise estimation of the trafigietion is possible even with a small number of sub-images,
provided the orientations of these sub-images spaf déatively evenly. Additionally, our experience suggdbtst a severe
selection of the detected sub-images is essential, as esegrath number of sub-images deviating from the model can bias
the estimation. Indeed, we have observed that such daviasigstematically lower the HF content of the estimatedsfiean
function. Our interpretation is that if a sub-image desdi®m the model (see for instance Fi), the corresponding mean
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Figure 8. Test image and edges detected by the method described iniSesbome of which are rejected by the subsequent
selection step (see Fig.for the final result of the extraction).

Figure 9. Test image and extracted sub-images.
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Figure 10. Modulus of the difference between the true transfer fumcéind its estimate. The maximum value i B0 2. The
lines indicate the directions orthogonal to the edges of#lected sub-images.

image profile will be smoother than for a true linear edge;lbst fit to this profile will then be obtained for a smoother PSF
than the true one.

6. CONCLUSION

A novel method has been presented for the identificationetrdnsfer function of an optical telescope from a singlegea
This method can be used both for the performance assessirtbetinstrument after launch, for the on-orbit refocusimgl a

for the restoration of the images recorded by the instruniBnis method is based on: (1) a physical modeling of the feains
functionvia the optical aberrations of the instrument; (2) the detectiod selection of sub-images containing features such as
natural step functions that can be parameterized eas)lthé3jlobal transfer function estimation from the set ofal-images

by a least-square criterion minimization which is non-¢éina the unknown aberrations.

The estimation part of this method has first been validatesimtilated sub-images of step functions, for several sets of
sub-images, two undersampling ratios and various noigddeW¥hen, the complete sub-image extraction and trangfetibn
estimation procedure has been validated on a realistiersathpled and noisy image. Future work include:

e taking into account other features, such as lines and daalgles, to increase the number of useful sub-images;
e investigating the influence of the spectral bandwidth ofitistrument;

e enhancing the automatic tuning of some of the thresholdnpeters for the detection and selection of the sub-images.
These parameters are currently related simplftfd, and to the noise level; this relation deserves further ifyason;

¢ further validating the method on experimental images.
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