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ABSTRACT

The on-orbit identification of the transfer function (TF) ofa spaceborne optical telescope is useful for the acceptancetest of
the instrument, for the on-orbit refocusing and for the restoration of the recorded images. An original method is presented to
perform such an identification from a single image. It is based on a physical modeling of the TFvia the optical aberrations of the
instrument, and on the automatic extraction of sub-images containing patterns that can be described with few parameters, e.g.
step functions. The estimation of the TF is performed by minimizing a least-square criterion incorporating all extracted sub-
images, as a function of the unknowns, which are the aberrations and the step parameters. Aliasing is explicitely incorporated
in the image modeling, so that the transfer function can be estimated up to the optical cutoff frequency. The method is validated
first on simulated images of step functions, then on a realistic, undersampled and noisy simulated image.

Keywords: wavefront sensing, optical transfer functions, remote sensing, deconvolution, image restoration, inverse problems,
telescopes.

1. INTRODUCTION AND PROBLEM STATEMENT

The on-orbit calibration of the transfer function (TF) of a spaceborne telescope may be performed using resolution targets,
but this reduces the time available for observations. Methods not needing the acquisition of such special purpose images are
thus preferable. Yet, estimating the TF from a single image is a difficult problem, as both the TF and the object are unknown.
Additionally, in real-world instruments, the images are not only noisy but also undersampled, so that the TF estimationcan be
biased by aliasing effects.

The recorded imagei is modeled as the noisy sampled convolution of the observed objecto (Earth scene) with the instru-
ment’s PSFh:

i = [h⋆o]
x

+n, (1)

where[·]
x

denotes the sampling operator. This model is adequate, at least piecewise in the image, for satellite imaging.

The problem at hand is to estimate the PSFh (or equivalently the TF̃h = FT(h)) from the imagei and our prior knowledge
on the instrument. Indeed, because we are concerned with on-orbit calibration, the instrument is partially known either from its
detailed opto-electronic design or from ground calibrations prior to launch. Hence we assume that parameters such as the linear
central obscuration, the detector transfer function (DTF), and the ratiofc/ fn of the optical cutoff frequency to the detector’s
Nyquist frequency, are known.

One is interested in a precise characterization of the two-dimensional (2-D) TF, especially in the high frequency domain.
Such a characterization is useful for the acceptance test ofthe instrument, for the on-orbit refocusing and for the restoration of
the recorded images. As most real-world instruments are undersampled, estimation of the high frequencies of the instrument
response should explicitly model the aliasing.

This problem is akin to blind deconvolution, as both the object and the instrument are unknown. However, BD aims
at restoring the object while the method proposed herein aims at a precise characterization of the OTF of the instrument.
Therefore, BD usually considers the TF characteristics as nuisance parameters and uses simple spatial-domain models of the
aliased instrument’s response (with exceptions, notably the approach of Schulz and Cain1).

Another difference between the method proposed here and BD resides in the type of processing performed on the image.
In BD, the whole image is processed in order to yield an estimate of the TF; this processing either consists in a joint estimation
of the TF and the object, or in a marginal estimation of the sole TF, for instance in a maximum likelihood framework.2,3 In
both cases the object model (by, e.g., a Markov random field) has many unknown object parameters (usually pixel values). The
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main problem of BD is to avoid confusions between the object and the instrument : for instance a smooth edge in the image
can be the result of a smooth object edge seen though a high resolution instrument or of a crisp object edge smoothed by a low
resolution instrument.

Consequently, unless some additional prior knowledge is available on the object (e.g., it is a star field) and/or on the TF
(e.g., through an optical parametric model), the TF estimate is often imprecise in the BD context.

Our approach is closer to conventional calibration on resolution targets. Indeed, we focus the estimation on parts of the
image which can be viewed as opportunistic resolution targets and which can be described by simple parametric models,
e.g., step functions, similarly to Refs.4 and5. We propose to use a physical modeling of the TF: it is parameterized by the
optical aberrations of the instrument expanded on (a limited number of) Zernike polynomials, as first proposed for the BDof
turbulence-degraded images.6 Moreover, we explicitly take aliasing effects into accountin our image model.

Section2 is devoted to the principle of the TF estimation method from aset of selected sub-images. Section3 validates the
estimation method by means of simulations. Section4 discusses the automatic selection of suitable sub-images from the whole
image. Section5 illustrates the performance of the complete extraction plus estimation process on a realistic simulated image.

2. TRANSFER FUNCTION ESTIMATION

2.1. Instrument model

The instrument is assumed to be partially known. Its TFh̃ is modeled as the product of the known DTFh̃det with the optical
transfer function (OTF)̃hopt:

h̃ = h̃opt× h̃det. (2)

The OTF is modeled through the aberrations (or phase)ϕ in the instrument’s pupil7 expanded on the first Zernike polynomials
Zl :

ϕ(x,y) =
11

∑
l=4

al Zl (x,y). (3)

Indeed in a space telescope there are essentially low order aberrations, which we here limit to Zernike polynomialsZ4 (defocus)
to Z11 (spherical aberration). The unknown of interest is the OTF but these aberrations allow us to parameterize the latter with
few, physically meaningful coefficients. Assuming that thespectral bandwidth is small compared to the central wavelength, the
OTF is related to the aberrations in the pupil through7:

h̃opt = FT
(

|FT−1(P(x,y)ejϕ(x,y))|2
)

, (4)

whereP is the pupil (or aperture) function, and FT denotes the Fourier transform. Lastly, the ratiofc/ fn of the OTF’s cutoff to
the detector’s Nyquist frequency is assumed to be known, andwill be taken as 1 or 2 in the following.

2.2. Considered sub-images: linear features

The TF estimation is performed on sub-images which should have a high frequency (HF) content, accept a simple parametric
model, and be sufficiently numerous in an image to lead to a reasonable statistical contrast. Linear features such as linear edges
meet all these conditions and are often used in instrument calibration.

Let us recall some basic properties of linear features, which are known as the Radon or “Fourier slice” theorem and will be
used in the following to reduce the computational burden of the criterion to 1-D computations. A linear feature with orientation
θ and profilep is a 2-D object whose radiometry takes the formo(x,y) = p(−xsinθ + ycosθ), i.e., is invariant along the
directionθ. It is trivial to show that the FT of such a feature lives on a radial line of orientationθ + π/2 of the Fourier plane,
with a complex amplitude which is the 1-D Fourier transform of the profilep. Thus the image of a linear feature through (1) is a
linear feature too, which results from the spreading of an image profile along the directionθ. Additionally, this image profile is
in turn the 1-D convolution of the object profilep with a unique 1-D responselθ called the linear spread function (LSF). Lastly,
the LSF is the 1-D inverse Fourier transform of the cut of the 2-D transfer function along the radial line of orientationθ+π/2.

Here we focus on linear features whose profile is a step function. These features are described by four parameters, as shown
in Fig. 1. Other linear features, such as double step functions, are used in Boneset al.5 and could be used here as an extension
of the following developments.
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Figure 1. Parameters of a step function: position and orientation (left), height and offset (right).

2.3. Principle of the transfer function estimation
We start with a set ofK sub-imagesi1, . . . , ik, . . . , iK , whose supportSK may be very different. These sub-images each corre-
spond to an object which is assumed to be a step (or Heavyside)function. This object, denoted byok, is fully characterized by
its orientationθk, its distance to the origindk, its heightαk and its lower value (or offset)βk, as illustrated on Fig.1.

Because the estimation of the OTF boils down to that of the first aberrations, we shall denote the PSF byh({al}11
l=4). The

estimation is performed by minimizing a least square criterion, which is non-linear in the aberrations:

J({al},{θk,dk,αk,βk}) =
K

∑
k=1

∑
(p,q)∈Sk

|ik(p,q)− [h({al}11
l=4)⋆ok(θk,dk,αk,βk)](p,q)|2. (5)

This criterion measures the discrepancy between the sub-image models[h⋆ok]x and the sub-imagesik extracted from the
recorded imagei. In the case of a stationary white Gaussian noise, which is a reasonable approximation for satellite imaging,
minimizing this criterion is equivalent to searching for a maximum likelihood solution.

2.4. Minimization of the criterion
The criterion is minimized jointly in all parameters, whichare the aberrations and the object parameters, globally forall sub-
images.

An essential step of the minimization of the criterion is itscomputation, which is essentially that of a sub-image model
[h⋆ok]x for the current parameters. The computation ofh is easily performed by using eqs. (2) and (4) and by replacing the
FT by an FFT in the latter.

We use the properties of linear features recalled in sub-section 2.2 to compute a sub-image model for a linear edge of
orientationθ through the following steps:

1. cut of the transfer function in the directionθ+π/2 (60o on Fig.2 (a)),

2. zero-padding of the cut (see2 (b)),

3. inverse FFT leading to an interpolated LSFlθ (see2 (c)),

4. numerical integration of the LSF to obtain the step image profile (see2 (d)),

5. spreading along directionθ of the step image profile oriented along directionθ+π/2 (see2 (e)).

The minimization is accelerated both by analytic considerations and by reasonable approximations. Firstly, the criterion
is quadratic in any (αk,βk), so that it can be minimized analytically in these variables, as a function of the other unknowns.
Secondly, we have checked that the anglesθk can be estimated precisely without knowing the aberrations, i.e., with a perfect
PSF. To do this, we minimize criterionJ of Eq. (5) as a function of all(θk,dk) for null aberrations. One notices that the
minimization can be performed separately on each variable pair (θk,dk) because each only appears in thek-th term ofJ.

Thanks to these considerations, the criterion to be minimized then only contains the variables of interestal that are related to
the OTF, and the distancesdk. Indeed, these must be re-estimated because they code for the step positions, which depend on the
shape of the PSF. The minimization is achieved by means of thePowell method, which does not need the analytic expression
of the criterion’s gradient.

Copyright 2001 Society of Photo-Optical Instrumentation Engineers.
This paper is published in the Proceedings of SPIE Vol. 4483, 2001, and is made available as an electronic preprint with permission of SPIE. One print orelectronic copy may be

made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or
for commercial purposes, or modification of the content of the paper are prohibited.



SPIE’s 46th Annual Meeting,“Earth Observing Systems VI”Conference,
William L. Barnes, Editor, Vol. 4483, San Diego, July 29 – August 3, 2001. 4

(a) (b) (c) (d) (e)

Figure 2. Computation steps for the sub-image model of a linear edge: cut of the transfer function (a), zero-padding (b),
inverse FFT leading to an interpolated LSF (c), numerical integration to obtain the step image profile (d) and 2-D spreading of
this profile (e).

3. VALIDATION OF THE ESTIMATION METHOD ON SYNTHETIC IMAGES

A first validation of the method was to estimate the OTF on sub-images that were computed exactly as the sub-image models
used for the estimation,i.e., by making use of the Radon theorem mentioned above; the results are very good, but probably not
representative of the estimation quality attainable on more realistic images.

In the following, the sub-images are 32×32 and computed by the discrete convolution of an oversampled object with an
oversampled PSF, which approximates a continuous convolution and is then sampled appropriately. Thus, a simulated sub-
image is not computed in the same way as the corresponding sub-image model during the estimation. This aims at validating
the robustness of the estimation with respect to small modeling errors and at preparing the validation on more realisticimages
such as the one presented in Section5. We present results obtained with two sets of sub-images; the first one is obtained with the
Shannon sampling rate (fc/ fn = 1) while the second one is obtained with a more realistic undersampling of a factorfc/ fn = 2.

The OTF is defined through the 8 first Zernike polynomials; theaberration coefficients are given in Table1 and make up
a total phase variation of 2π/8rd RMS. The linear central obscuration is 26%. The DTF is that of a CCD detector and takes
into account the temporal integration along the satellite track. The global transfer function and its two (optical and detector)
components are represented on Fig.3.

Coefficient a4 a5 a6 a7 a8 a9 a10 a11

Name defocus astigm. x astigm. y coma x coma y triang. coma x triang. coma y spherical
Radial order 2 2 2 3 3 3 3 4
Value (rd) 2π/(8

√
5) −2π/(8

√
5) 0 0 2π/(8

√
5) 0 2π/(8

√
5) −2π/(8

√
5)

Table 1. Aberration mixture used to compute the OTF (note: 2π/(8
√

5)≈ 0,35rd). The total optical path difference is thus
λ/8.

We first present simulation results with noiseless images. For fc/ fn = 1, even with only two sub-images oriented at 0 and
90o, the estimated transfer function is very good in these directions, as illustrated in Fig.4. It is very poor in other directions,
with a maximum error of 0.13; this illustrates the fact that each sub-image of a step provides information in one direction,
perpendicular to the step. When the number of sub-images increases while the steps’ orientations diversify, the estimation
quickly improves.

For fc/ fn = 2, two sub-images oriented at 0 and 90o do not suffice to obtain a good transfer function estimate in these
directions, as illustrated in Fig.5; the maximum error on the 2-D transfer function is 0.16; in particular, the latter is poorly
extrapolated abovefn. This is expected, as the orientations of the sub-images do not allow distinguishing between aliased high
spatial frequencies and low spatial frequencies. As soon asthe steps’ orientations diversify, the estimation quicklyimproves; in
particular, Fig.6 showsx andy cuts of the transfer function estimate obtained for four sub-images of edges oriented every 45o.

Tables2and3summarize the transfer function estimation results for two, four and eight noiseless sub-images, with regularly
spaced orientations, forfc/ fn = 1 and fc/ fn = 2 respectively. In particular for eight sub-images the maximum estimation error
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(a) (b)

Figure 3. Transfer functions used for the simulations, obtained as product of the optical TF by the detector TF, forfc/ fn = 1
(a) andfc/ fn = 2 (b). Profiles alongx in solid line, alongy in dashed line.

over the whole spatial frequency domain is 1.510−2 and 0.7310−2 for fc/ fn = 1 and fc/ fn = 2 respectively. The fact that the
error in the undersampled case is about twice smaller than inthe Shannon-sampled case can be attributed to the fact that the
transfer function itself, at medium to high frequencies, isabout twice smaller in the undersampled case, due to the DTF.

We now consider eight sub-images with the same orientationsas above, and assess the robustness of the method with respect
to noise. For this purpose, the sub-images are degraded by anadditive stationary white Gaussian noise of standard deviation
σn, and the transfer function is estimated from these eight sub-images. The considered values ofσn are 1%,

√
10≈ 3% and

10% of the image maximum value. The first value is typical of anEarth observing telescope, the second one is a quite noisy
case and the third is an extreme case.

For fc/ fn = 1, up to a value ofσn = 3%, the estimation quality remains almost constant and the maximum error remains
below 2% (see Table4); for 10% noise, the error becomes very important and more sub-images would be needed to reach a
reasonable maximum error value.

For fc/ fn = 2 , the estimation quality is about the same forσn = 0% andσn = 1%, and is below 1%. The error starts off
sooner than forfc/ fn = 1, i.e., from σn = 3% on, because an aliased PSF is coded with less pixels than a correctly sampled one
so that, again, more sub-images would be needed to reach a reasonable maximum error value.

# of sub-images 2 4 8
Maximum error 1310−2 1.810−2 1.510−2

MSE 3.510−2 0.4710−2 0.4010−2

Table 2. Maximum error and mean-square error (MSE) on the transfer function estimation for two, four and eight noiseless
sub-images with correct sampling.

# of sub-images 2 4 8
Maximum error 1610−2 0.8710−2 0.7310−2

MSE 3.210−2 0.1910−2 0.1710−2

Table 3. Maximum error and mean-square error (MSE) on the transfer function estimation for two, four and eight noiseless
sub-images undersampled by a factor 2.
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Figure 4. Profiles of the estimated (+++) and true (— alongx, −−− along y) transfer functions from 2 noiseless 32× 32
sub-images with correct sampling. Left: real part; right: imaginary part.

Figure 5. Profiles of the estimated (+++) and true (— alongx, −−− along y) transfer functions from 2 noiseless 32× 32
sub-images undersampled by a factor 2. Left: real part; right: imaginary part.

Figure 6. Profiles of the estimated (+++) and true (— alongx, −−− along y) transfer functions from 4 noiseless 32× 32
sub-images undersampled by a factor 2. Left: real part; right: imaginary part.
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σn 0% 1% 3.2% 10%
Max. error 1.510−2 1.410−2 1.610−2 7.610−2

MSE 0.4010−2 0.3610−2 0.5310−2 2.110−2

Table 4. Maximum error and mean-square error (MSE) on the transfer function estimation for eight sub-images with correct
sampling, for several noise levels. The noise is stationarywhite Gaussian, with a standard deviation of 0%, 1%,

√
10% and

10% of the image maximum value respectively.

σn 0% 1% 3.2% 10%
Max. error 0.7310−2 0.7910−2 2.210−2 4.210−2

MSE 0.1710−2 0.1910−2 0.4810−2 0.8510−2

Table 5. Maximum error and mean-square error (MSE) on the transfer function estimation for eight sub-images undersampled
by a factor 2, for several noise levels. The noise is stationary white Gaussian, with a standard deviation of 0%, 1%,

√
10% and

10% of the image maximum value respectively.

4. AUTOMATIC EXTRACTION OF THE SUB-IMAGES

The extraction is achieved in two steps. The first step is a fast processing of the whole image, designed to detect the relevant
features and to minimize the rate of missed features; the second step further checks the sub-images for consistency withthe
linear model and aims at minimizing the rate of false alarms.

4.1. Detection step

We use a standard edge detector,i.e., Deriche’s implementation of the Canny detector8 followed by a polygonalization step, in
order to extract linear edges in the image. We then select sub-images around edges whose extensions both along the step and
orthogonally to it are greater than the assumed PSF diameterd.

Then we use a region growing segmentation starting on both sides of the selected edges to extract the two regions adjacent
to the edge and to compute their mean valuesm1,m2 and standard deviationss1,s2. Then we select the high-contrast edges
bordering uniform regions according to the following criterion:

|m1−m2| > 2∗max(s1,s2).

4.2. Selection step

The second step further checks the sub-images for consistency with the model of a convolved and noisy step function. Thisstep
is akin to sub-pixel localization of edges, as already notedin Ref.5.

Each sub-image is rotated by bi-cubic interpolation so thatthe edge is aligned with the vertical axis, using the orientation
given by the polygonalization step. Then two tests are conducted on the resulting (horizontal) profiles. Firstly, the variations in
each profile near both ends should be consistent with the image SNR. The sub-image is rejected if these variations are above
2σn.

Secondly, the central part of the profiles should be essentially sampled and shifted versions of a unique perfect profile,
except for the noise. The shifts results from the fact that the orientation of the feature is only approximatively known at this
stage: an orientation error results, to the first order, in a linearly growing shift along the edge. We identify sub-pixelshifts for
each profile by a least-square fit. This fit is performed by expanding iteratively the interpolation formulae to the first order,
similarly to standard motion estimation techniques. As a result, the profiles are precisely aligned with the vertical axis. A linear
regression step is then conducted on the vector of shifts. Such a regression accounts for the already mentioned orientation error.
The rejection test is conducted on the residual shifts: the sub-image is rejected if the residual shift standard deviation is above
a given threshold. Illustrations of this rejection processare given in Fig.7.
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Figure 7. (a) sub-image with a “bump” and the linear edge detected in the first step: note the position and orientation errors of
the detected edge; (b) mean residual shift of the profiles (asa function of the coordinate along the edge): the large oscillation
around coordinate 18 is a signature of the bump and leads to a rejection.

4.3. Discussion

Such a two step detection/recognition scheme is classical in pattern recognition and can also be found in Ref.5. In this reference,
the first step is based on the Hough transform9 to detect linear features which can be either single or double steps. Here, the
proposed detection step is tailored for single step detection. The second step of Ref.5 relies on polynomial fit and is adapted to
the large ratiofc/ fn of Spot images, but could fail for moderate undersampling.

The two main parameters for sub-image extraction are the PSFdiameter in pixel, which is inversely proportional to the ratio
fc/ fn, and the signal-to-noise ratio (or more generally the available statistical characteristics of the noise). A difficultthreshold
to adjust is the threshold for the rejection based on the profiles’ residual shifts: it should depend onfc/ fn, on the SNR and
on the length of the segment. This relationship is currentlyempirically defined. The extraction process has been successfully
tested on synthetic images for different noise variances and for two values offc/ fn (1 and 2).

5. VALIDATION OF THE GLOBAL METHOD ON A REALISTIC IMAGE

We have used an aerial 1696×1696 metric image of the Grenoble region (c©IGN) to generate the object. We could not use the
original image itself as an object; indeed, this image was already somewhat smooth because of its acquisition process. So the
object was taken as a segmented version of this original image, with gray levels given by the mean level of each region, and
piecewise-linear edges.

A 424× 424 4m resolution image of this object is obtained by discrete convolution (see the discussion in Sect.3) and
undersampling (fc/ fn = 2). The PSF is the aliased PSF corresponding to Fig.3 (b), and the standard deviation of the added
noise is 1%, or 2.55 gray levels.

Figure8 shows the image and the detected edges, before the selectionstep, and Figure9 shows the 11 sub-images resulting
from the extraction (detection and selection). The result of the transfer function estimation is presented in Fig.10. The
maximum error is 3.010−2, and is only reached for frequencies for which no sub-image provides information.

These results show that a precise estimation of the transferfunction is possible even with a small number of sub-images,
provided the orientations of these sub-images span 180o relatively evenly. Additionally, our experience suggeststhat a severe
selection of the detected sub-images is essential, as even asmall number of sub-images deviating from the model can bias
the estimation. Indeed, we have observed that such deviations systematically lower the HF content of the estimated transfer
function. Our interpretation is that if a sub-image deviates from the model (see for instance Fig.7), the corresponding mean
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Figure 8. Test image and edges detected by the method described in Sect. 4.1, some of which are rejected by the subsequent
selection step (see Fig.9 for the final result of the extraction).

Figure 9. Test image and extracted sub-images.
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Figure 10. Modulus of the difference between the true transfer function and its estimate. The maximum value is 3.010−2. The
lines indicate the directions orthogonal to the edges of theselected sub-images.

image profile will be smoother than for a true linear edge; thebest fit to this profile will then be obtained for a smoother PSF
than the true one.

6. CONCLUSION

A novel method has been presented for the identification of the transfer function of an optical telescope from a single image.
This method can be used both for the performance assessment of the instrument after launch, for the on-orbit refocusing and
for the restoration of the images recorded by the instrument. This method is based on: (1) a physical modeling of the transfer
functionvia the optical aberrations of the instrument; (2) the detection and selection of sub-images containing features such as
natural step functions that can be parameterized easily; (3) the global transfer function estimation from the set of allsub-images
by a least-square criterion minimization which is non-linear in the unknown aberrations.

The estimation part of this method has first been validated ofsimulated sub-images of step functions, for several sets of
sub-images, two undersampling ratios and various noise levels. Then, the complete sub-image extraction and transfer function
estimation procedure has been validated on a realistic, undersampled and noisy image. Future work include:

• taking into account other features, such as lines and doubleedges, to increase the number of useful sub-images;

• investigating the influence of the spectral bandwidth of theinstrument;

• enhancing the automatic tuning of some of the threshold parameters for the detection and selection of the sub-images.
These parameters are currently related simply tofc/ fn and to the noise level; this relation deserves further investigation;

• further validating the method on experimental images.

ACKNOWLEDGMENTS

The authors thank Frédéric Champagnat and Vincent Michau for fruitful discussions.

Copyright 2001 Society of Photo-Optical Instrumentation Engineers.
This paper is published in the Proceedings of SPIE Vol. 4483, 2001, and is made available as an electronic preprint with permission of SPIE. One print orelectronic copy may be

made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or
for commercial purposes, or modification of the content of the paper are prohibited.



SPIE’s 46th Annual Meeting,“Earth Observing Systems VI”Conference,
William L. Barnes, Editor, Vol. 4483, San Diego, July 29 – August 3, 2001. 11

REFERENCES

1. T. J. Schulz and S. C. Cain, “Simultaneous phase retrievaland deblurring for the Hubble space telescope,” inThe Restora-
tion of HST Images ans Spectra II, R. J. Hanisch and R. L. White, eds., pp. 206–211, Space Telescope Science Institute,
1994.

2. A. K. Katsaggelos, ed.,Digital Image Restoration, Springer Series in Information Sciences, Springer-Verlag, Berlin, 1991.
3. A. Jalobeanu, L. Blanc-Féraud, and J. Zerubia, “étude de la restitution des paramètres instrumentaux en imagerie satelli-

taire,” Tech. Rep. 3957, INRIA, June 2000.
4. B. Forster and P. Best, “Estimation of SPOT P-mode point spread function and derivation of a deconvolution filter,”Journal

of Photogrammetry and Remote Sensing49, pp. 32–42, 1994.
5. P. J. Bones, T. Bretschneider, C. J. Forne, R. P. Millane, and S. J. McNeill, “Tomographic blur identification using image

edges,” inImage Reconstruction from Incomplete Data, vol. 4123, 2000.
6. T. J. Schulz, “Multiframe blind deconvolution of astronomical images,”J. Opt. Soc. Am. A10(5), pp. 1064–1073, 1993.
7. M. Born and E. Wolf,Principles of Optics, Pergamon Press, Sixth (corrected) ed., 1993.
8. R. Deriche, “Using Canny’s criteria to derive a recursively implemented edge detector,”IJCV1, pp. 167–187, May 1987.
9. R. Duda and P. Hart, “Use of the Hough transform to detect lines and curves in pictures,”Commun. ACM15, 1972.

Copyright 2001 Society of Photo-Optical Instrumentation Engineers.
This paper is published in the Proceedings of SPIE Vol. 4483, 2001, and is made available as an electronic preprint with permission of SPIE. One print orelectronic copy may be

made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or
for commercial purposes, or modification of the content of the paper are prohibited.


	1 Introduction and problem statement
	2 Transfer function estimation
	2.1 Instrument model
	2.2 Considered sub-images: linear features
	2.3 Principle of the transfer function estimation
	2.4 Minimization of the criterion

	3 Validation of the estimation method on synthetic images
	4 Automatic extraction of the sub-images
	4.1 Detection step
	4.2 Selection step
	4.3 Discussion

	5 Validation of the global method on a realistic image
	6 Conclusion

