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On-axis conoscopic holography without a conjugate image

L. M. Mugnier and G. Y. Sirat

Ecole Nationale Supgrieure des T616communications, D6partement Images, 46 rue Barrault, 75634 Paris Cedex 13, France

Received July 16, 1991

We present a method for removing the conjugate image in an incoherent-light holographic technique, namely,
on-axis conoscopic holography. The point-spread function that we obtain is that of a complex Gabor zone pat-
tern, which thus should allow good-quality reconstructions of objects. Experimental results are also presented,
which confirm the validity of this method.

Conoscopic holography is a recent incoherent-light
holographic technique first presented in 1985
(Ref. 1) that is based on the propagation of light in a
birefringent medium. The basic setup is shown
in Fig. 1: a uniaxial crystal (C) is sandwiched
between two circular polarizers (P1, P2). A lens im-
ages the object-here a point source-into the sys-
tem. When the monochromatic light from the image
(S) of the point source passes through the crystal and
the two polarizers, a Gabor zone pattern (GZP) is ob-
served at the output; it is the result of the velocity
disparity between the ordinary and the extraordi-
nary waves in the crystal. This interference pat-
tern can be recorded on a photographic plate and
reconstructed optically' both coherently and inco-
herently. It can also, as in Ref. 2 and this Letter, be
recorded on a CCD camera and digitized in a micro-
computer for a numerical reconstruction of the im-
age and the shape of the object. Such patterns thus
are referred to as holograms.

In the on-axis (or in-line) configuration, the crys-
tal axis is parallel to the geometrical axis, Oz, of the
system, and the point-spread function (PSF), say
H +, is a real GZP plus a bias. For a complete object,
the hologram is the incoherent superposition of the
GZP of each point.

The two major problems in the reconstruction of
the original object are the bias and the conjugate im-
age. The bias is a usual drawback of incoherent
holography; this problem has been solved2'3 by in-
serting an electrically driven half-wave plate [a
liquid-crystal light valve (LCLV)] after the first cir-
cular polarizer so as to change its handedess (e.g.,
from right to left handed), thus providing us with a
second PSF, which we denote Hcg. By calculating
numerically the difference between the holograms
obtained with each impulse response, we obtain a
real GZP without bias, Hc = H+ - Hc. These
PSF's are given by

H+(x, y) = I+ cos[fr(x 2 + y 2 )]}, (1)

H-(xy) = COS[fr(X 2 + y 2)]}, (2)

Hc, = - H,-7 = cos[wfTr(x2 + y2)], (3)

where x and y are the coordinates in the recording
plane and fr is the Fresnel parameter, a scale factor
that depends on the distance between the point and
the recording plane. The exact expression of fr can
be found in Ref. 4, but it is not needed here. It is
well known that the cosine in Hc can be decomposed
into two exponentials, corresponding to the virtual
image and to the conjugate real image of the point,5
which, from an algorithmic point of view, is due to
the fact that the real GZP Hc has zeros in the Fourier
domain, whereas a phase GZP has none.

We address here the remaining problem, namely,
the elimination of the conjugate image. The con-
figurations used until now to remove it are (i) the
quasi-complex configuration,2 3 in which one of the
polarizers is changed from circular to linear, whose
PSF can be algorithmically modified to approximate
a complex GZP, and (ii) the off-axis configuration,
obtained by tilting the crystal axis' and/or by placing
a stop in the front focal plane of the lens.7 9 This
configuration is only similar to and not identical
with the coherent off-axis configuration. This leads
to inherent drawbacks of the method that make it
suitable for some applications such as a range
finder10 but not as a three-dimensional camera.

The method that we present here is inspired by
these two configurations and yields directly an im-
pulse response that is an on-axis phase GZP,

He(x, y) = exp[iirfr(x2 + y 2)]. (4)
The basic idea to remove this conjugate image is to
modify again the impulse response by replacing the
input circular polarizer with a linear one, as in the
quasi-complex configuration, and by placing a mask
in the front focal plane of the lens that images the
object into the system (see Fig. 2). It can be shown
by geometrical optics that if the mask transmit-
tance depends on the sole polar angle 0 of the
recording plane, it is applied to the impulse response
in a three-dimensional invariant way.

The first operation is done by setting the LCLV
delay to a quarter-wave; the PSF is then

H(x,y) = 2{1 + sin[2(0 - ko)]sin[lrfr(x2 + y 2)]},

(5)
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Fig. 1. Basic setup. A uniaxial crystal (C) is sandwiched
between two circular polarizers (P1, P2). A point source
(S) illuminates the system, and a Gabor zone pattern is
observed at the output.
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Fig. 2. Principle of the modified setup. The input polar-
izer is now linear and makes an angle 00 with axis X. A
mask is added to this polarizer to modify the impulse re-
sponse and is integral with it.

where ko is the angle of the linear polarizer with the
reference axis Ox of the recording plane. We re-
move the bias by changing the angle of the linear
input polarizer from Oo to Oo + 7/2, which can be
achieved as above by adding a half-wave retardation
after the first polarizer (i.e., by setting the LCLV
delay to a three-quarter wave) and by calculating
the difference of the two holograms numerically.
With a mask m(0) installed, we record, after subtrac-
tion of the bias,

By numerical linear combination with H,, with the
proper (iv/2) factor, we obtain the ideal PSF He.

The experimental setup is shown in Fig. 4, and
the different PSF's obtained as functions of the
transmittance of the LCLV are summarized in
Table 1.

A collimated He-Ne 5-mW laser beatn is focused
through a microscope objective to a point that serves
as a point source. The mask and the valve are
mounted together on a rotation stage controlled by
the microcomputer. The (slow and fast) axes of the
LCLV (Meadowlark Optics LVR 0.7) are put at 450 to
the edges of the mask; thus the axis of the linear
polarizer resulting from the circular polarizer and
the valve is aligned with the edges of the mask, in
accordance with the definition of the mask's trans-
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(O = 0)
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Fig. 3. Mask is put in the front focal plane of the system.
X' and Y' are the axes of the LCLV. The circular polar-
izer and the LCLV (when set to a one- or three-quarter
wave) give a linear polarizer whose axis Oo is at ±456
with X'.
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H(x,y) = m(0)sin[2(0 - 0o)]sin[7rfr(x2 + y 2)]. (6)

Various masks are possible for removing the
sin(20) modulation and obtaining the imaginary
part of the desired PSF, among which is the follow-
ing binary amplitude mask (Fig. 3):

m(0) = 1 for sin[2(0 - Oo)] > 0;

m(0) = 0 elsewhere.

This mask cancels the two quadrants in which the
sin(20) modulation is negative. The fact that only
the difference (0 - (ko) intervenes in this expression
shows that the mask must be integral with the linear
polarizer (in our setup with the LCLV). By rotating
the linear polarizer and the mask together by 180°
or 3600 and averaging the snapshots, we obtain
(apart from a 0.5 factor that is due to the two black
quadrants)

Hs(x, y) = (1/v7) [J m(0)sin(20)d0]

X sin[vf,(x 2 + y 2)],

Hs(x, y) = (2/7)sin[rGr(X 2 + y 2)] (7)

Note that without the mask this integral would be
zero, i.e., we would obtain only the averaged bias.
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Fig. 4. Experimental setup showing
the impulse response of the system.

the acquisition of

Table 1. Different PSF Values, after Integration
of the Snapshots, as Functions of the LCLV Delay'

LCLV PSF

Standard scheme
o H' = (1/2) [1 + cos('I)]
A/2 H - = (1/2) [1 - cos(P)]
Numerical difference H, = H+ - H- = cos(T)

Our new scheme
A/4 H = (1/2) [1 + (2/X)sin(t)]
- A/4 H- = (1/2)[1 - (2/7r)sin(P)]
Numerical difference Hs = H+ - H- = (2/7r)sin(P)
Linear combination He = Hc + i(7r/2)Hs = exp(iP)

aHe is the final, ideal PSF (with neither bias nor conjugate
image), obtained by linear combination of the four experimental
PSF's. T is a shorthand notation for the phase 7rfr(X2 + y

2
).
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Fig. 5. (a), (b) Experimental results: integrated snapshots with the different PSF's giving (a) the real part H, and (b) the
imaginary part Hs of the ideal PSF He. Numerically calculated (c) modulus and (d) phase of the experimental PSE

mittance. A standard 50-mm/1.8 Nikkor lens with
the mask in its front focal plane images the point
source into the rest of the system (a calcite 10 mm x
10 mm x 25 mm crystal, an output circular polar-
izer, and a CCD camera). We used calcite because
of its high birefringence (0.17): the lateral resolu-
tion of the image reconstructed from a conoscopic
hologram is proportional to the relative birefrin-
gence and to the length of the crystal.2

The images in Fig. 5 show the integrated snap-
shots with the cosine [Fig. 5(a)] and sine [Fig. 5(b)]
PSF and the modulus [Fig. 5(c)] and phase
[Fig. 5(d)]. Because of diffraction the sharp edges
of the mask are smoothed, so that we lose a few cen-
tral pixels (approximately the first fringe, i.e., half
the first Fresnel zone). This effect can be reduced
by taking diffraction into account in the calculation
of the mask.

The image of the modulus is not uniform, which is
mainly due to the nonsphericity of the point-source
wave and to impurities in the system. Neverthe-
less, the phase image is of good quality, and the fit to
a parabola of the unwrapped phase from the 10 cen-
tral lines gave a standard deviation of 1.5% of a
Fresnel zone (i.e., of 2 7r).

In conclusion, we have described a new method for
obtaining both the real and the imaginary parts of
the ideal PSF and presented some experimental re-

sults. This method will be used to restore the
shapes of three-dimensional objects from their cono-
scopic holograms.
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manuscript. L. M. Mugnier thanks A. Maruani for
his encouragement.
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