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Noise propagation in wave-front
sensing with phase diversity

Ludovic Meynadier, Vincent Michau, Marie-Thérèse Velluet, Jean-Marc Conan,
Laurent M. Mugnier, and Gérard Rousset

The phase diversity technique is studied as a wave-front sensor to be implemented with widely extended
sources. The wave-front phase expanded on the Zernike polynomials is estimated from a pair of images
~in focus and out of focus! by use of a maximum-likelihood approach. The propagation of the photon
noise in the images on the estimated phase is derived from a theoretical analysis. The covariance matrix
of the phase estimator is calculated, and the optimal distance between the observation planes that
minimizes the noise propagation is determined. The phase error is inversely proportional to the number
of photons in the images. The noise variance on the Zernike polynomials increases with the order of the
polynomial. These results are confirmed with both numerical and experimental validations. The
influence of the spectral bandwidth on the phase estimator is also studied with simulations. © 1999
Optical Society of America

OCIS codes: 010.1080, 010.7350, 100.5070, 100.3190, 100.3020, 120.5050.
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1. Introduction

The wave-front sensor is a key component of adaptive
~or active! optics systems. For these applications

any wave-front sensing techniques have been devel-
ped and characterized.1 However, only a few tech-

niques can be used with widely extended sources.2–5

Among them, phase diversity, which requires only two
focal-plane images, presents some interesting charac-
teristics. The optical setup is simple and can be part
of the imaging camera. This sensor does not require
any calibration, unlike Shack–Hartmann-type sen-
sors. However, this sensor does not lead to a direct
measurement of the aberrations. It requires iterative
data reduction methods to estimate the phase, unlike
the wave-front sensors based on a geometrical optics
approximation, which provide a noniterative estima-
tion of the phase, since the signal is the gradient or the
Laplacian of the phase.

The phase diversity technique was first proposed
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by Gonsalves to improve the quality of the images
degraded by aberrations and was then applied by
many authors,7–10 particularly to solar imaging
through turbulence.11–13 Simultaneously with the
derivation of the restored image, the aberrations of
the optical system can also be derived as a byproduct.
The phase diversity technique was, for example, suc-
cessfully applied to the determination of the Hubble
Space Telescope aberrations.14–16 Some studies on
the performance evaluation of phase diversity have
been published,17–19 but a modal quantitative evalu-
ation of the performance of phase diversity, as a
wave-front sensor, has not, to our knowledge, been
performed. This is our objective in this paper.

A data reduction method was implemented to de-
rive the wave front from the phase diversity data.
The wave-front measurement quality was studied
theoretically. The technique was tested both on nu-
merically simulated data and on experimentally re-
corded images. The principle of phase diversity is
presented in Section 2. In Section 3 the data reduc-
tion method and the corresponding wave-front esti-
mation algorithm are described. When faint sources
are used, the main source of wave-front error is the
noise in the images. Section 4 is dedicated to the
theoretical study of the noise propagation on the
phase estimation. The performance evaluation of
the wave-front estimation algorithm is obtained by
numerical simulations in Section 5. Section 6 con-
10 August 1999 y Vol. 38, No. 23 y APPLIED OPTICS 4967



p

v
f
p
p

s
w
a
e
t
c
m

a
a
n
n
p
m
w
m

4

tains the experimental validation of the behavior of
the phase diversity.

2. Principle

The phase diversity principle6 is based on the simul-
taneous recording of two or more quasi-monochromatic
images. In the following we consider the use of only
two images. The first image is recorded in the focal
plane of the optical system. The second image, called
the diverse image, is recorded in an out-of-focus plane.
The distance between these two planes is calibrated
and corresponds to a small defocus. With extended
sources, the use of the additional image is required so
that the solution is more likely to be unique.6,20–22

An implementation of the phase diversity is illus-
trated in Fig. 1. A beam splitter and two detector
arrays placed near the focus of the telescope are used
to record simultaneously the focal and the out-of-
focus images.

Assuming that the light is spatially incoherent, the
two recorded images Ik~k 5 1, 2! can be expressed as
functions of the aberrated phase in the optical system
pupil w and of the intensity distribution of the source
O:

Ik~r! 5 O~r! p Sk~r!, (1)

where p denotes the convolution product, Sk is the
point-spread function ~PSF! in the observation plane
number k, and r is a two-dimensional vector in the
image plane. For a monochromatic wave, Sk is ex-
pressed by

Sk~r! 5 U*
2`

1`

Ak~x!expSi
2p

lF
r z xDdxU2

,

with

A1~x! 5 a~x! exp@iw~x!#,

A2~x! 5 A1~x! exp@ifd~x!#,

w~x! 5
2pD~x!

l
, (2)

Fig. 1. Phase diversity principle.
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where D~x! is the optical path, assumed to be inde-
endent of the wavelength l; A1 is the complex am-

plitude in the pupil plane; F is the focal length; fd is
the defocus phase for image I2; x is a two-dimensional
ector in the pupil plane; and a is the characteristic
unction of the pupil ~1 inside, 0 outside for a binary
upil!. Indeed, the intensity fluctuations in the pu-
il plane are neglected.
From Eqs. ~1! and ~2! it is clear that the relation-

hip between the recorded images and the aberrated
ave front is not linear. Furthermore, there is no
nalytical solution that gives the wave front from an
xpression that combines the two images. Similar
o phase diversity applied to image restoration, we
hose an iterative estimation by minimizing an error
etric.

3. Maximum-Likelihood Estimation

The error metric is derived from a stochastic ap-
proach. The noise in the images is the sum of the
photon noise ~Poisson-distributed random variable!
nd the Gaussian CCD readout noise. For a bright
nd extended object, stationary white Gaussian
oise, with a uniform variance equal to the mean
umber of photonsypixel, is a first approximation of
hoton noise. With this assumption the joint
aximum-likelihood ~ML! estimate of the wave front
and of the object O is jointly determined by mini-
ization of the following criterion:

E 5 (
k,i

uIk~ri! 2 O~ri!pSk~ri!u2. (3)

The spatial sampling of the images ~ri! is determined
by that of the detector array. The object is esti-
mated with the same sampling. In fact, for a low
photon count or an object that does not cover the
whole field of view ~FOV!, the approximation of sta-
tionary Gaussian noise is no longer valid and the
estimator is no longer a true ML estimator but rather
a least-squares estimator. Of course, it is possible to
use the likelihood of the true photon noise.8 In any
case, even if the least-squares estimator is subopti-
mal, it still provides well-restored phases, as shown
in Sections 5 and 6.

To take advantage of the discrete Fourier trans-
forms ~DFT’s! in the implementation of the previous
criterion, we treat the object, the PSF’s, and the im-
ages as periodic arrays with a periodic cell size of N 3
N. The criterion becomes

E } (
k51

2

(
i51

N2

uĨk~fi! 2 Õ~fi!S̃k~fi!u2, (4)

where X̃ is the DFT of X and fi is a two-dimensional
vector in the discrete spatial-frequency space.

For monochromatic simulations we consider that
the images are sampled at the Shannon rate, i.e., 2
pixels per lyD, where l is the wavelength and D is
the telescope diameter.

The estimated phase is described by use of its ex-
pansion on the Zernike polynomials.23 Only a lim-
ited number of Zernike coefficients al are estimated,
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to as great as l 5 M. The three first coefficients a1–3
are not determined. The first coefficient, the piston
coefficient, is a constant added to the phase and has
no influence on the PSF. The others, the tilt coeffi-
cients, are not estimated, since they introduce a shift
only in the image that is of no importance for widely
extended sources. ~M 2 3! Zernike coefficients are
herefore estimated.

To avoid edge effects in the case of widely extended
ources, the convolution in Eq. ~3! is performed with
n object support that is extended by a guard-band as
sed by Seldin.12 In our case we chose a guard-band

width equal to Ny2. If the support of the PSF is
small, the guard-band width can be reduced.

To minimize the error metric @Eq. ~4!#, the gradient-
conjugate method24,25 was chosen. Through this min-
imization we jointly estimate the sampled object O and
the ~M 2 3! Zernike coefficients of the phase w, apply-
ing a strict positivity constraint on the sampled object,
thanks to a reparametrization26,27 ~see also Appendix
A!. The gradients of the error metric with respect to
the object and the phase estimates are presented in
Appendix A.

4. Theoretical Study of the Noise Propagation

A. Analytical Approach

Fessler28 proposed a formalism to study the propaga-
tion of the measurement noise on the set of estimated
parameters $pe% at convergence, in the case of the
resolution of an inverse problem by a ML approach.
$pe% are the parameters estimated by minimization of
he error metric E, which is a function of both the
arameters $p% and the measurements $m%:

$pe% 5 arg min
$ p%

E~$p%, $m%!. (5)

The parameters to be estimated are the Zernike co-
efficients a4–aM and the object. The measurements
are the pixel intensities in each image.

By use of the second-order Taylor expansion of E,
the covariance matrix of the estimated parameters
@Cov $pe%# reads as28

@Cov$pe%# < @¹p,p
2 E#21@¹m,p

2 E#

3 @Cov$m%#t@¹m,p
2 E#t@¹p,p

2 E#21, (6)

where @Cov $m%# is the covariance matrix of the mea-
surement noise; @¹p,p

2 E# is the second partial deriva-
tive matrix of the error metric with respect to
parameters, also called the Hessian matrix of the
error; @¹m,p

2 E# is the second partial derivative matrix
of the error with respect to m and p; and superscript
t denotes transposition of the matrix that follows.
To derive @Cov $pe%#, the partial derivatives in the
matrices of relation ~6! are computed at a specific
point that corresponds to the mean measurements
~i.e., without noise! and to the associated estimated
parameters.

In our case ~see Section 3! we have no spatial cor-
relation of the noise; the covariance matrix @Cov $m%#
is therefore diagonal. In addition, for widely ex-
tended sources, the fluctuation of the intensity in the
object is small compared with the mean intensity
level. So the variance of the noise, whether photon
or detector noise, can be assumed to be constant and
will be expressed in photoelectronsypixel. Conse-
quently, the covariance matrix of the noise in the
images is proportional to the identity matrix. Fi-
nally, to make the computation of relation ~6! tracta-
ble, we assume that the object is known and we do not
use a guard band. This assumption may seem like
an oversimplification; however, it is justified a poste-
iori by the fact that the theoretically estimated
odal variances are found to be in good agreement
ith the simulations presented in Section 5. We

tudy the noise propagation only on the estimated
ernike coefficients. Relation ~6! becomes29

@Cov$al,e%# <
Nph

N2 @¹$al9%,$al%
2 E#21@¹$Ik%,$al%

2 E#

3 t@¹$Ik%,$al%
2 E#t@¹$al9%,$al%

2 E#21, (7)

where Nph is the number of photons per image and
al,e is the estimate of the coefficient al.

The expressions of the two partial derivative ma-
trices of the error are given in Appendix B. We have
demonstrated that the product of @¹$Ik%,$al%

2 E# with its
ranspose matrix is proportional to @¹$al9%,$al%

2 E#.
Therefore the covariance matrix of the noise for the
estimated Zernike coefficients is proportional to the
inverse of the Hessian matrix of the error metric and
to the noise variance in the images ~Nph!:

@Cov $al,e%# < 2
Nph

N4 @¹al9,al

2 E#21. (8)

The expression of the Hessian matrix depends on the
object power spectrum and on the complex ampli-
tudes in the pupil for each image @see Eq. ~B3!#.

When the complex amplitude in the pupil tends
toward the amplitude modulus distribution in the
pupil ~zero-order expansion of the complex ampli-
tude!, it can be shown that the covariance matrix of
the noise for estimated Zernike coefficients is in-
versely proportional to the number of photonsyimage:

@Cov$al,e%# }
1

KNph
@}#, (9)

where K ~K 5 2 generally! is the number of observa-
ion planes and @}# is a matrix independent of Nph.

@}# is a function only of the nature of the object and
f experimental parameters.
Relation ~9! demonstrates that the noise variance

n the Zernike coefficients is inversely proportional to
he total number of photons KNph, collected by the

telescope in the image FOV. This behavior is simi-
lar to that of other wave-front sensors.1

Writing Nph 5 N2nph, where nph is the average
number of photonsypixel, shows that it is interesting
to increase N2, which means increase the FOV, for a
given widely extended source and a given nph. This
behavior is also observed in the wave-front error ex-
10 August 1999 y Vol. 38, No. 23 y APPLIED OPTICS 4969
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Table 1. Values in Radians of the Coefficients Used for the Simulation

4

pression obtained with a Shack–Hartmann wave-
front sensor used with a widely extended object.3

To take advantage of this gain brought on by the
increase of the FOV, one must however, remain in the
anisoplanatic FOV. This condition is easily verified
for a space active telescope or in ophthalmology,30 for
xample.
Relation ~9! is an approximation. The true ex-

pression depends on the actual phase. However, it
is easy to demonstrate, with a higher-order expan-
sion of the complex amplitude, that the matrix @Cov
$al,e%# higher-order terms depend only on the second-
order ~or more! phase terms. Consequently, the
noise propagation is almost independent of the phase
amplitude for small aberrations, which is the case in
closed-loop adaptive ~or active! optics.

B. Numerical Application

The full expression of the covariance matrix is com-
plicated @see Eq. ~B3!#, and its analytical evaluation is

ifficult. Instead, we compute it numerically on a
articular example, using relations ~8! and ~B3!.
he object is a spiral galaxy sampled by 64 3 64
ixels ~see Fig. 2!. This object, of limited extent,
oes not require a guard band. This is the only case
n this paper in which a guard band is not used. The
istorted phase is described by the first 21 Zernike
olynomials and has a spatial standard deviation cor-
esponding to ly7 rms. The values of the coefficients
re listed in Table 1, and a perspective view of the
ave front is shown in Fig. 3. The image obtained in

he focal plane is shown in Fig. 4: Fig. 4~a! repre-
ents the noiseless diffraction limited image, and Fig.
~b! shows the aberrated image with a total photon
umber of 107. We perform the phase estimation

with M 5 21 or 36 Zernike coefficients.
After numerical computation of relation ~8! we no-

tice first that the covariance matrix @Cov $al,e%# is

Fig. 2. Spiral galaxy object.
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almost diagonal. Figure 5 presents the noise vari-
ance of each estimated Zernike coefficient ~i.e., the

iagonal of the covariance matrix! for Nph 5 107 pho-
tonsyimage. Note that the variances are relatively
low ~;1023 rad2, considering 107 photonsyimage!.
For a given number of estimated polynomials M, the

oise variance increases with the polynomial azi-
uthal and radial degrees.23 This behavior is spe-

cific to phase diversity. It is different from the noise
propagation in the other wave-front sensors. With
Shack–Hartmann or curvature wave-front sensors
the noise variance decreases quickly with the radial
degree of the Zernike polynomials.1 Moreover, we
can see in Fig. 5 that the noise variance for a given
polynomial increases slightly with M, the number of
estimated coefficients. In addition, the total vari-
ance ~¥iai

2! increases significantly with M. Limiting
the number of reconstructed Zernike coefficients is
indeed equivalent to an implicit regularization that
limits the noise amplification but generates a bias.31

Hence there is a higher noise level for a larger num-
ber of estimated Zernike coefficients.

Coefficient Value ~rad!

a4 20.2
a5 0.3
a6 20.45
a7 0.4
a8 0.3
a9 20.25
a10 0.35
a11 0.2
a12 0.1
a13 0.05
a14 20.05
a15 0.05
a16 0.02
a17 0.01
a18 20.01
a19 20.02
a20 0.01
a21 0.01

Fig. 3. Wave front used for the numerical approach of the noise
propagation theory.
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The phase diversity is, consequently, better
adapted for the estimation of the low-order aberra-
tions. This property is particularly interesting for
active optic systems, i.e., the compensation for the
telescope aberrations, which do not need a large num-
ber of Zernike coefficients to be estimated, but re-
quires a great accuracy. The use of the phase
diversity for estimation of high-order modes ~i.e., in
adaptive optics system! requires a better regulariza-
ion technique than the one used in this paper. For
xample, a priori knowledge of the phase, such as the
tatistics of the turbulent phase, could be easily in-
orporated into the error metric32,33 to regularize the
roblem and to preserve a good accuracy even on the
igh orders.
The influence of the distance between the two ob-

ervation planes on the noise propagation must also
e studied. Figure 6 presents the total noise vari-
nce of the first 21 estimated Zernike coefficients as
function of the amount of defocus between the two

bservation planes. For the first time to our knowl-
dge we demonstrate the existence of an optimal de-

Fig. 4. Images of the spiral galaxy in the focal plane. ~a! Noiseles
number.

Fig. 5. Noise variance ~in radians squared! of the first 21 ~solid
curve! and 36 ~dotted curve! estimated Zernike coefficients for 107

photons and 64 3 64 pixelsyimage.
focus that minimizes the noise propagation on the
estimated phase. The minimum is approximately
equal to 2.6p rad of defocus wave-front amplitude for
this particular case. The corresponding focus dis-
tance depends on the optical system focal ratio.
When the defocus amplitude decreases, the difference
between the focal image and the diverse one is no
longer sufficient to allow for a good convergence of the
phase diversity algorithm. However, when the de-
focus amplitude is too large, the contrast in the out-
of-focus image is attenuated and this image is no
longer usable.

5. Performance Estimation by Numerical Simulation

In Section 4 we developed the analytical expression of
the covariance matrix of the estimated parameters.
We showed that, for a small coefficient amplitude, the
expression depends only on the detected flux level, on
the image size, and on the number of estimated
Zernike polynomials. To confirm this dependence
without any assumption, below we present results

raction-limited image. ~b! Aberrated image with 107 total photon

Fig. 6. The total noise variance ~in radians squared! of the first 21
estimated Zernike coefficients versus the defocus wave-front am-
plitude for 107 photons and 64 3 64 pixelsyimage.
s diff
10 August 1999 y Vol. 38, No. 23 y APPLIED OPTICS 4971
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obtained by numerical simulations, using the ML es-
timation presented in Section 3.

A. Image Simulation

We performed a simulation in which the diverse
number K of observation planes is equal to 2. The

efocus amplitude for the second observation plane is
p rad, as proposed by many authors.7,10,12,13,34,35

The monochromatic images are sampled according to
the Shannon criterion.

The simulation of the images used to study wave-
front sensing with phase diversity presents several
steps: the phase and the PSF simulations, the
noiseless image simulation, and the noise simulation.

The phase in the pupil, which is assumed to be an
unobstructed disk, is computed as a linear combina-
tion of the first Zernike polynomials.23 The ampli-
tude of the distorted phase is limited to 2p rad. In
practice, when this condition is met, the gradient-
based minimization algorithm used does not fall
within local minima.

The PSF in the focal plane is deduced from the
phase in the pupil @see Eq. ~2!#. To satisfy the

hannon criterion, the complex amplitude in the pu-
il, which is of size 64 3 64 pixels, is zero padded to
128 3 128 pixel array then Fourier transformed

nd squared to obtain a 128 3 128 pixel PSF array.
he PSF in the second plane is computed similarly by
ddition of fd to the phase in the pupil.
To obtain the image pair, a discrete convolution

product is performed between an extended 128 3 128
pixel object, such as the Earth viewed from a satellite
~see Fig. 7!, and the PSF corresponding to each ob-
servation plane. The control area ~64 3 64 or 32 3
32 pixels! is then extracted to obtain the actual im-
ages used in the deconvolution.

The phase diversity method is sensitive to image

Fig. 7. Urban scene used for computing the images in the simu-
lations.
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formation chromaticity @see Eq. ~2!#. We simulate
polychromatic images by adding monochromatic
PSF’s obtained at different wavelengths. To simu-
late these images, we assume that the Shannon cri-
terion is satisfied at the shortest wavelength of the
spectral band. Consequently, the other PSF’s are
oversampled. This is achieved by reduction of the
size of the pupil to smaller than 64 3 64 pixels. Note
that the complex amplitude has to be computed with
a phase scaled according to the wavelength @see Eq.
~2!#. Because the size of the pupil can be reduced
only by an integer number of pixels, the number of
possible wavelengths is limited and depends on the
bandwidth ~see Subsection 5.C!. The source is as-
sumed to have a flat chromatic spectrum.

Furthermore, noise can be added to the images.
The whole image is normalized by the given average
number of photons Nph. Then the intensity distri-
bution of the noisy image is determined from a rejec-
tion method25 where we use the noiseless image and
assume that the noise in each pixel is statistically
independent and follows a Poisson distribution.

B. Noise Propagation and Bias

The distorted phase is simulated with L 5 21 Zernike
olynomials, and we take the same value for each
ernike coefficient. The estimated phase is ex-
anded on the same polynomials to avoid aliasing
ffects, i.e., M 5 L. In these simulations the object
s considered to be unknown and is also estimated by
he algorithm.

For each studied case the noise influence on the
stimated phase is obtained when we process n real-
zations of noisy monochromatic image pairs ~n 5 50!.
herefore, for each estimated Zernike coefficient al,

its mean value is expressed by ^al&n ~in radians!,
where ^ &n is the average on the n realizations. The
variance of the Zernike coefficient is determined by
sal

2 5 ^al
2&n 2 ^al&n

2 ~in radians squared!. For a
iven case of phase estimation we compute the total
ean-squared error by the sum of the variance sal

2

and of the square of the bias. The bias is defined by
^al&n 2 al,true.

The standard deviation sal
and the bias of the es-

timated coefficients are determined for three differ-
ent sets of low-amplitude aberrations ~a4–aL all equal
to 0, 0.037, or 0.05 rad, respectively! with 32 3 32
pixels in the images and a total flux level of 107

photonsyimage. The different images observed in
the focal plane are reproduced in Fig. 8. We observe
~see Fig. 9! that the variance of the estimated Zernike
coefficients is independent of the values of these low-
amplitude aberrations. In addition, there is no evi-
dence of a bias when we consider the error bars ~see
Fig. 10!. Therefore the standard deviation domi-
nates the bias ~see Fig. 9!, and the mean-squared
error is almost equal to the noise variance.

An additional study was performed with a bigger
part of the noisy blurred scene ~64 3 64 pixel images!.

lux levels range from 106 to 109 photonsyimage, and
the amplitude of the coefficients a4–a21 is equal to
0.05 rad. Figures 11~a! and 11~b! show images with
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106 and 109, respectively, per image. In Fig. 12 we
an observe that the variance clearly decreases with
he flux level and that it tends to increase with the
ernike polynomial number, even if this trend was
ore obvious on the theoretical variances ~see Fig. 5!.

The decrease of the variance is inversely proportional
to the number of photons in the image, as shown in
Fig. 13. The results of the theoretical study are
therefore confirmed.

Figure 14 represents the bias in the estimation of
the Zernike coefficients for the different flux levels.
As we saw in Fig. 10, the estimated value is not
biased, except for low flux level. With 106 photonsy
image, the bias becomes too large for active optics ap-
plications. Indeed, the performance requirements
on the standard deviation of the estimated wave front
are ;0.1 rad, and some estimated terms are far from
the true values ~the bias dominates on the standard
deviation!. So there is a practical minimum flux
level for the reconstruction to achieve a good estima-
tion.

Fig. 8. Full-extent noisy blurred scenes in the focal plane with a
o 0.05 rad ~a! in the focal plane, ~b! in the out-of-focus plane. The

Fig. 9. Standard deviation of estimated Zernike coefficients on 50
image pairs of 32 3 32 pixels for different values of Zernike coef-

cients a4–a21 used to simulate the distorted phase, dotted curve,
al 5 0 rad; dashed curve, al 5 0.037 rad; solid curve, al 5 0.05 rad;
and 107 photonsyimage.
C. Image Spectral Bandwidth Effect

We assumed that the image channel was strictly
monochromatic in the phase estimation algorithm al-
ready presented. For practical implementation it is
necessary to determine the behavior of the data re-
duction process with respect to the source spectral
bandwidth.29,36

The data reduction method was applied to poly-
chromatic images numerically simulated with differ-
ent spectral bandwidths as described in the
Subsection 5.A. The aberrated optical path D, used
for image formation, has a spatial standard deviation
of 63-nm rms and is assumed to be independent of
wavelength. It was described with the first 21
Zernike polynomials ~see Table 1!, and the estimated

hase was determined with the same number of poly-
omials to eliminate aliasing errors of this study.
he chosen image size is 64 3 64 pixels. The poly-
hromatic images were generated, assuming that the
patial distribution of the object luminance was in-

of 107 photons and with the amplitude of coefficients a4–a21 equal
r aberrated images are similar, because they are of low amplitude.

Fig. 10. Bias of estimated Zernike coefficients on 50 image pairs
of 32 3 32 pixels for different values of Zernike coefficients a4–a21

used to simulate the distorted phase, dotted curve, al 5 0 rad;
dashed curve, al 5 0.037 rad; solid curve al 5 0.05 rad; and 107

photons per image. For this final case the 63s error bars are
lotted.
total
othe
10 August 1999 y Vol. 38, No. 23 y APPLIED OPTICS 4973
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dependent of the wavelength. No noise was added
to the images. Finally, the data were reduced, as-
suming image formation at the mean wavelength of

Fig. 11. Images in the focal plane for different fluxes and a42a21 5
ccount for the algorithm. ~a! Total flux level is 106 photons; ~b!

Fig. 12. Noise variance of estimated Zernike coefficients on 50
image pairs of 64 3 64 pixels for different total photon numbersy
mage. From the top, Nph 5 106, 107, 108, and 109 photons, and
4–a21 5 0.05 rad.

Fig. 13. Average noise variance of estimated Zernike coefficients
versus the detected flux levelyimage.
974 APPLIED OPTICS y Vol. 38, No. 23 y 10 August 1999
the spectral bandwidth with the adequate oversam-
pling, considering that the Shannon criterion is sat-
isfied at the shortest wavelength, lmin 5 440 nm.

We consider three different spectral bandwidths:
100, 200, and 300 nm. The polychromatic PSF is
simulated as described in Subsection 5.A by addition
of 7, 11, and 14 monochromatic PSF’s, respectively,
that span the spectral interval. The results are
summarized in Table 2. For example, the residual
phase error, i.e., the difference between the estimated
and the true phases, with 300-nm spectral bandwidth
noiseless images, is ly200 rms. The same accuracy
is obtained with 64 3 64 pixel monochromatic noisy
images with 108 photons.

5 rad. The square indicates the actual recorded image taken into
flux level is 109 photons.

Fig. 14. Bias of estimated Zernike coefficients on 50 image pairs
of 64 3 64 pixels for different numbers of photonsyimage. Solid
line, Nph 5 109; long-dashed curve, Nph 5 108; dashed curve, Nph 5
07; dotted curve, Nph 5 106; and a42a21 5 0.05 rad. For this

final case, the 63s error bars are plotted.

Table 2. Phase Residual Error in Function of the Spectral Bandwidth

Spectral bandwidth Dl ~nm!a 100 200 300
Phase residual error ~l rms! ly700 ly350 ly200

almin 5 440 nm.
0.0
total
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This short study demonstrates that the phase di-
versity method can be used with quite a large spectral
bandwidth in the visible spectrum. Therefore, to
minimize the total error, a trade-off has to be made
between errors that are due to the spectral band-
width and those that are due to the limited number of
detected photons.

6. Experimental Results

To validate the main results presented in Sections 4
and 5, an experiment was performed. The experi-
mental setup is presented in Fig. 15. The extended
source is simulated with a slide, illuminated with a
slide projector placed at the focus of lens L1. The
slide is imaged on a CCD camera placed near the
focal plane of lens L2. The focal and the out-of-focus
images are recorded in succession by a translation of
L2. These two images are shown in Fig. 16. The
pectral bandwidth is limited by a filter ~central
avelength 633 nm with 10-nm width!. A parallel

face plate placed on a rotational stage is installed
between L2 and the CCD camera to generate known
berrations ~astigmatism mainly!.
The data reduction software was modified to re-

uce the experimental data, with the geometric mis-
egistration between the two observation planes
aken into account.12 Table 3 presents a comparison

between the generated theoretical astigmatism coef-
ficients and those estimated by the phase diversity
technique for different angular positions u of the

late. The differences between theoretical and esti-

Fig. 16. Experimentally recorded images ~a

Fig. 15. Optical setup of phase diversity experiment.
ated values are lower than ly125 rms and validate
his experimental estimation.

The measurement repeatability was then studied
ith 50 image pairs of 64 3 64 pixels ~cf. Subsection
.B!. Figure 17 presents the variance of the esti-
ated Zernike coefficients for different fluxes ~5 3

05, 5 3 106, 5 3 107, and 5 3 108 photonsyimage!.
or low flux ~here 5 3 105 and 5 3 106! the general

behavior and the level of the variances are similar to
those obtained by simulation. The fluctuations of
the estimated Zernike coefficients, owing to the pho-
ton noise in the images, are predominant. As ex-
pected, the variance level is inversely proportional to
the number of photons in the images. Nevertheless
for higher fluxes ~5 3 107 and 5 3 108! it is no longer
dominated by the photon noise effect but rather by
other experimental sources of fluctuation such as the
fluctuations of the air refraction index along the op-
tical path. The experimental bench was placed in a
box to reduce this effect, but it is still noticeable for
high flux levels. Therefore the spectrum of the
Zernike coefficient variance is modified, especially for
low-order aberrations.

7. Conclusion

In this paper we have presented a data reduction
method for the phase diversity technique to estimate
the wave front from two images of widely extended
sources.

We have theoretically studied the effect of image
photon noise on the phase estimation. For the first
time to our knowledge we have demonstrated the
increase of the noise propagation with the aberration
order as opposed to other conventional wave-front
sensors ~Shack–Hartmann or curvature sensor! and
the existence of an optimal amount of defocus be-
tween the two observation planes. We have con-
firmed the noise behavior of the phase diversity by
numerical simulations and have noticed a bias ap-
pearing on the phase estimation at low light levels.
We have also shown the capability of phase diversity
to work within a large spectral bandwidth. In addi-

he focal plane, ~b! in the out-of-focus plane.
! in t
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Table 3. Theoretical and Estimated Astigmatism Zernike Coefficients

4

tion, we have verified by experiment the performance
of phase diversity applied to wave-front sensing with
widely extended sources.

In the field of data reduction, better phase regular-
ization is currently under study. It should allow for
reduction of the noise propagation and of the aliasing
effect that is due to the high-order aberrations. We
also plan to perform an experimental comparison be-
tween the phase diversity technique and the Shack–
Hartmann wave-front sensor for extended objects.

Appendix A: Conjugate Gradient Minimization for an
Extended Source

The mean-squared error between the image in each
observation plane and the convolution product of the
estimated object and the estimated PSF is given by
relation ~4!:

E 5 (
i

uĨ1~fi! 2 Õ~fi!S̃1~fi!u2 1 uĨ2~fi! 2 Õ~fi!S̃2~fi!u2.

(A1)

he error is expressed in the Fourier domain to sim-
lify the first derivative calculation ~i.e., the convolu-
ion product is replaced with the multiplication!.

The DFT of X is given by

X̃k,l 5
1

N2 (
n51

N

(
m51

N

Xn,m expF22ip~nk 1 ml !

N G , (A2)

here i2 5 21 and the inverse DFT of X is

Xn,m 5 (
k51

N

(
l51

N

X̃k,l expF2ip~nk 1 ml !

N G , (A3)

here N2 is the pixel numberyimage.

Fig. 17. Experimental noise variance of estimated Zernike coef-
ficients on 50 image pairs of 64 3 64 pixels for different numbers
of photonsyimage.

in the Function of the Angular Position u of the Slide Plate with Respect
to the Optical Axis

u ~°! 0° 15° 30° 230° 45°

a6,true ~rad! 0 20.056 20.226 20.226 20.507
a6,e ~rad! 0.006 20.043 20.197 20.247 20.556
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The gradient ~or first partial derivative! of the error
metric E with respect to the parameter X is deduced
rom gradients in the Fourier domain27,37:

]E
]X

5
1

N2 DFT21S]E

]X̃
D , (A4)

with the abusive notation

]E

]X̃
5

]E

]X̃R

1 i
]E

]X̃I

, (A5)

where X̃R 5 Re~X̃! is the real part of X̃ and X̃I 5
Im~X̃!, is the imaginary part of X̃.

The gradient of the error E with respect to the DFT
of the object Õ for two observation planes therefore
reads as

]E

]Õ
~f! 5 2@S̃*1~ÕS̃1 2 Ĩ1! 1 S̃*2~ÕS̃2 2 Ĩ2!#~f!. (A6)

In the same way the gradient of E with respect to the
DFT of the PSF in the kth observation plane S̃k is

]E

]S̃k

~f! 5 2@Õ*~ÕS̃k 2 Ĩk!#~f!, (A7)

and the gradients of E with respect to O and Sk are
simply @see Eq. ~A4!#

]E
]O

~r! 5
1

N2 DFT21F]E

]Õ
~f!G ,

]E
]Sk

~r! 5
1

N2 DFT21F ]E

]S̃k

~f!G , (A8)

where N is the number of pixels in the image side.
To enforce the object positivity, the object O is de-

scribed as the square of a function V, O~r! 5 V2~r!.
The gradient of E with respect to these parameters V
s27

]E
]V

~r! 5
]E
]O

]O
]V

~r! 5 2V~r!
]E
]O

~r!. (A9)

To smooth the phase, and to take into account a
circular support constraint in the pupil plane, the
phase is projected onto the Zernike polynomial base.
We search the gradient of the error with respect to a
limited number M of Zernike polynomial coeffi-
cients12:

]E
]al

5 (
k51

2 ( (
j[support

H(
i
F ]E
]Sk~ri!

]Sk

]w~xj!
G]w

]al
J), (A10)

where w~x! 5 ( l 5 1
M alZl~x! and al ~in radians! is the

oefficient of the lth Zernike polynomial Zl. Other
advantages include an implicit PSF positivity as is
seen in Eq. ~2! and a small number of parameters to
e optimized ~only a limited number of coefficients



c

E

]

p

g

instead of a great number of points!. The gradient of
Sk with respect to al is27

]Sk~ri!

]al
5 22 Im$Ã*k~ri!@Ãk~ri! p Z̃l~ri!#%, (A11)

where Im~X! is the imaginary part of the complex
variable X and X* is the complex conjugate of X.

For convenience in the following developments we
define I9 as

I9~r! 5 I~r!P~r!, (A12)

where I is the full image of an infinite extended
source @see Eq. ~1!# and P is defined by

P~r! 5 H1 if r [ FOV
0 otherwise . (A13)

So the error @see relation ~4!# becomes

E 5 (
i

uĨ91~fi! 2 @Õ~fi!S̃1~fi!# p P̃~fi!u2 1 uĨ92~fi!

2 @Õ~fi!S̃2~fi!# p P̃~fi!u2. (A14)

To simplify the following equations, the discrete
onvolution product is noted:

Ck~fi! 5 (
j

Õ~fj!S̃k~fj!P̃~fi 2 fj!. (A15)

The gradient of E with respect to Õ is defined by @see
q. ~A4!#

]E

]Õ
~fi! 5 F ]

]ÕR~fi!
1 i

]

]ÕI~fi!
G E, (A16)

]

]ÕR~f0!
E 5 (

k
(

i
SCk

]

]ÕR

C*k 1 C*k
]

]ÕR

Ck

2 Ĩ9
]

]ÕR

C*k 2 Ĩ9*
]

]ÕR

CkD~fi!,

]

]ÕI~f0!
E 5 (

k
(

i
SCk

]

]ÕI

C*k 1 C*k
]

]ÕI

Ck

2 Ĩ9
]

]ÕI

C*k 2 Ĩ9*
]

]ÕI

CkD~fi!. (A17)

Then

]

]ÕR~f0!
Ck~fi! 5

]

]ÕR~f0!
(

j
Õ~fj!S̃k~fj!P̃~fi 2 fj!

5 S̃k~f0!P̃~fi 2 f0!, (A18)

]

]ÕR~f0!
C*k~fi! 5 S̃*k~f0!P̃~fi 2 f0!, (A19)

]

]ÕI~f0!
Ck~fi! 5 iS̃k~f0!P̃~fi 2 f0!, (A20)
]

]ÕI~f0!
C*k~fi! 5 2iS̃*k~f0!P̃~fi 2 f0!. (A21)

So Eq. ~A16! becomes

]E
]Õ

~f0! 5 2 (
k

S̃*k~f0! (
i

@Ck~fi! 2 Ĩ9~fi!#P̃*~fi 2 f0!,

]E

Õ
~f0! 5 2(S̃*1~f0!$@Õ~f0!S̃1~f0!# p P̃~f0!

2 Ĩ9~f0!% p P̃*~2f0! 1 S̃*2~f0!

3 $@Õ~f0!S̃2~f0!# p P̃~f0! 2 Ĩ9~f0!% p P̃*~2f0!).

With the DFT properties38 and with P a real func-
tion,

]E

]Õ
~f0! 5 2(S̃*1~f0!$@Õ~f0!S̃1~f0!# p P̃~f0!

2 Ĩ9~f0!% p P̃~f0! 1 S̃*2~f0!$@Õ~f0!S̃2~f0!# p P̃~f0!

2 Ĩ9~f0!% p P̃~f0!). (A22)

In the same way the gradient of E with respect to
S̃k is given by

]E
]S̃k

~f0! 5 2Õ*~f0!$@Õ~f0!S̃k~f0!# pP̃~f0!

2 Ĩ9~f0!% p P̃~f0!, (A23)

]E
]O

~r0! 5
4

N92 DFT21F]E

]Õ
~f0!G ,

]E
]Sk

~r0! 5
4

N92 DFT21F ]E

]S̃k

~f0!G , (A24)

with N9 5 2N, the number of pixels of a double sup-
ort side.
The new expression of the PSF gradient with a

uard band can be used in Eq. ~A10! to obtain the
gradient with respect to the Zernike coefficients.

Appendix B: Second Partial Derivatives of the Error
Metric for Noise Propagation

The second partial derivatives of the error metric
with respect to the images and the Zernike coeffi-
cients are deduced from equations ~A7! and ~A11!.
In addition, the determination of the noise propaga-
tion requires only the computation of the second par-
tial derivatives of the error metric with the mean of
the measurements and the corresponding estimated
parameters ~see Section 4!. The difference between
a noise-free image and the corresponding estimation
is equal to zero, such as its Fourier transform:

^Ĩk& 2 ÕS̃k,e 5 0. (B1)

Equation ~A7! is also equal to zero. Therefore, in the
computation of the derivative of ]Ey]al with respect
10 August 1999 y Vol. 38, No. 23 y APPLIED OPTICS 4977
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to Zernike coefficients, only the derivative of the DFT
of the PSF with respect to al9 is not null:

@¹al9,al

2 E# 5
]2E

]al]a9l
5 2 ReS(

k51

2

(
h51

N2

uÕ~fh!u2
]S̃*k,e

]al

]S̃k,e

]a9l
D ,

(B2)

and its full expression when accounting for equation
~A12! is

]2E
]al]a9l

5 8 (
k51

2

(
h51

N2

uÕ~fh!u2(DFT$Im@Ã*k,e

3 ~Ãk,e p Z̃l!#%)*DFT$Im@Ã*k,e~Ãk,e p Z̃l9!#%.
(B3)

The derivative of ]Ey]al with respect to the images
consists simply of deriving the DFT of the image:

]Ĩk~fh!

]Ik~ri!
5

1
N2 expS2i

2p

N
fhriD . (B4)

Therefore the second derivative of the error with re-
spect to the Zernike coefficients and the images is

@¹Ik,al

2 E# 5
]2E

]al]Ik~ri!
5 2

2
N2 FO~ri! p

]Sk,e~ri!

]al
G , (B5)

and its full expression when accounting for Eq. ~A11!
is given by

]2E
]al]Ik~ri!

5
4

N2 (
k51

2

Im($@Z̃l~ri! p Ãk,e~ri!#

3 Ã*k,e~ri!% p O~ri!). (B6)

The product of the matrix @¹Ik~r!,al

2 E# with its
transpose matrix is equal to

@¹Ik,al

2 E#t@¹Ik,al9

2 E# 5
4

N4 (
k51

2

(
i

ReHFO~ri! p
]Sk,e~ri!

]al
G

3 FO~ri! p
]Sk,e~ri!

]al9
GJ . (B7)

t is easy to demonstrate with the Parseval theorem
hat Eq. ~B7! is similar to Eq. ~B2!. In fact we can

write

@¹Ik,al

2 E#t@¹Ik,al9

2 E# 5
2

N2 @¹al9,al

2 E#. (B8)
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