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Current optical interferometers are affected by unknown turbulent phases on each telescope. In the field of
radio interferometry, the self-calibration technique is a powerful tool to process interferometric data with miss-
ing phase information. This paper intends to revisit the application of self-calibration to optical long-baseline
interferometry (OLBI). We cast rigorously the OLBI data processing problem into the self-calibration frame-
work and demonstrate the efficiency of the method on a real astronomical OLBI data set. © 2008 Optical So-
ciety of America
OCIS codes: 120.3180, 100.3020, 100.3190.
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. INTRODUCTION
ptical long-baseline interferometry (OLBI) aims to com-
ine light collected by widely separated telescopes to ac-
ess angular resolutions beyond the diffration limit of
ach individual aperture. Long-baseline interferometers
easure a discrete set of spatial frequencies of the ob-

erved object, or Fourier data. Due to instrumental com-
lexity, current interferometers recombine only a few tele-
copes, and even several nights of observation lead to a
ery limited number of Fourier data; moreover, due to the
tmospheric turbulence, it is very difficult to get reliable
hase information from ground-based interferometry [1].
ence OLBI has to deal with severe underdetermination
nd missing phase information.
The classical answer to underdetermination is to use a

arametric approach, i.e., to search for an object entirely
escribed by a small set of parameters (for instance, a cir-
ular object with a parametric attenuation profile). With a
good model,” such an approach allows a reliable and pre-
ise estimation of astrophysical parameters. A good model
hould limit as much as possible the number of free pa-
ameters, while allowing a description of all the object’s
eatures, because parametric inversion cannot reveal un-
uessed features. The �2 fit is often used as a model qual-
ty diagnosis, since an inadequate model will often result
n a poor fit to the data, thus revealing that a new model
with more parameters or different parameters) is
eeded. However, it does not reveal which new model
ust be adopted.
As progress in instrumental issues gives access to bet-

er frequency coverage, i.e., to potentially finer descrip-
ions of the object, the choice of the model becomes more
ifficult. An alternate and complementary approach is
hen nonparametric reconstruction, which we will call
optical long-baseline interferometric imaging” (OLBII).
1084-7529/09/010108-13/$15.00 © 2
maging means that the object is described by a large set
f parameters, such as coefficients of the object’s decom-
osition in some spatial functional basis, while underde-
ermination is tackled by regularization tools. Imaging is
seful to understand the structure of a complex object
hen prior information is limited.
From the beginning, OLBII has been influenced by the

emarkable techniques developed in radio interferometry
ith very large baselines (VLBI) [2]. For instance, the

WIPE” OLBII technique of Lannes et al. [3] is inspired
y the well-known CLEAN method [4]. As regards the
issing phase problem, the self-calibration technique

roposed in radio interferometry by Cornwell and Wilkin-
on [5] underlies recent work in OLBII [6].

This paper intends to revisit the application of self-
alibration to OLBI. Our contribution is threefold:

1. We cast rigorously the OLBI data processing problem
nto the self-calibration framework, with consideration of
he second-order statistics of the noise.

2. We propose WISARD (for Weak-phase Interferometric
ample Alternating Reconstruction Device), a self-
alibration algorithm dedicated to OLBII, which uses the
roposed data model within a Bayesian regularization ap-
roach.
3. We demonstrate the efficiency of WISARD on a real as-

ronomical OLBI data set.
The paper is organized as follows: Section 2 describes

he observation model of OLBI, briefly presents a Baye-
ian approach, and discusses the main problems that are
ncountered because of the incomplete OLBI data. Sec-
ion 3 is devoted to the derivation of a specific myopic
odel, which achieves a good approximation of the data
odel and leads to self-calibration techniques. One such

echnique, WISARD, is proposed in Section 4. Results of
ISARD on simulated and real astronomical data sets are
009 Optical Society of America
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resented in Section 5. Our conclusions are given in Sec-
ion 6. Most mathematical derivations are gathered in the
ppendixes.

. REALISTIC OBSERVABLES IN OPTICAL
ONG-BASELINE INTERFEROMETRY
. Ideal Interferometric Data
ere we describe the ideal data, i.e., without aberrations,
oise, or turbulence effects, produced by an Nt-telescope

nterferometer observing a monochromatic source with
avelength �. The brightness distribution of the source is
enoted x���, � being angular coordinates on the sky. In-
ividual telescopes Tk of the interferometer are located at
hree-space positions OT� k, and we denote rk�t� the projec-
ion of OT� k onto P, the plane normal to the pointing di-
ection. Because of the Earth’s rotation, the pointing di-
ection changes during an observing night, so these
rojected vectors are time dependent.
Each pair �Tk ,Tl� of telescopes yields a fringe pattern

ith a 2D spatial frequency �kl�t��
ukl�t�

� , where ukl�t� is
he baseline

ukl�t� � rl�t� − rk�t�, �1�

hat is, the projection of the vector TkTl
� onto P.

Measuring the position and contrast of these fringes
ields a phase �data

kl �t� and an amplitude adata
kl �t�, which

an be grouped together in a complex visibility:

ykl
data�t� � akl

data�t�ei�kl
data�t�. �2�

ccording to the Van Cittert–Zernike theorem [7], com-
lex visibilities are ideally linked to the normalized Fou-
ier transform (FT) of x��� at the 2D spatial frequency
kl�t� through

ykl
data�t� = �kl�t�

FT�x������kl�t��

FT�x�����0�
. �3�

he instrumental visibility �kl�t� accounts from the many
otential sources of visibility loss: residual perturbations
f the wavefront at each telescope, differential tilts be-
ween telescopes, differential polarization effects, nonzero
pectral width, etc. In practice, the instrumental visibility
s calibrated on a star reputed to be unresolved by the in-
erferometer before the object of interest is observed and
s compensated for in the preprocessing of the raw data.
hanks to this calibration step, we replace �kl�t� with 1 in
q. (3).
For the sake of clarity, we consider a complete

t-telescope array in what follows, i.e., one in which all
he possible two-telescope baselines can be formed simul-
aneously, and a nonredundant interferometer configura-
ion, where each baseline provides a different spatial fre-
uency. Extension to incomplete and redundant settings
s straightforward. Thus, at each time t, there are

Nb = �Nt

2 � =
Nt�Nt − 1�

2
�4�

omplex observation equations such as Eq. (3).
Let us briefly introduce the discretized observation
odel. The sought brightness distribution x is repre-

ented by the coefficients x of its projection onto some con-
enient spatial basis (box functions, sinc’s, wavelets, pro-
ate spheroidal functions, etc). The normalized discrete-
ontinuous Fourier matrix H�t� maps the chosen discrete
patial representation into the real-valued instantaneous
requency coverage ��kl��t���1�k�l�Nt

, and we further de-
ne

	a�x,t� � 
H�t�x
,

��x,t� � arg�H�t�x�.� �5�

. Effect of Atmospheric Turbulence on Short-Exposure
easurements
t optical wavelengths, atmospheric turbulence affects
hase measurements through path-length fluctuations.
he statistics of these fluctuations can be described by a

ime-scale parameter, the coherence time �0, typically
round 10 ms, and by a space-scale parameter, the Fried
arameter r0 [[8]]. We assume that the diameter of the el-
mentary apertures is small relative to the Fried param-
ter or that each telescope is corrected from the effects of
urbulence by adaptive optics. The remaining turbulent
ffects on the interferometric measurements can be seen
s a delay line between the two telescopes Tk and Tl,
hich affects short-exposure phase measurements

hrough an additive differential piston �l�t�−�k�t�:

�kl
data�t� = �kl�x,t� + �l�t� − �k�t� + noise�2	� �6�

r, in a matrix formulation:

�data�t� = ��x,t� + B��t� + noise�2	�, �7�

here Nb
Nt operator B, called the baseline operator, is
efined in Appendix A.
Because the differential pistons are zero mean, one
ight think that the object phase ��x , t� could be recov-

red from Eq. (7) by averaging over many realizations of
he atmosphere. However, for a long baseline relative to
he Fried parameter, the optical path difference between
pertures introduced by turbulence may be very much
reater than the observation wavelength and thus lead to
andom pistons much larger than 2	. The 2	-wrapped
erturbation that affects phase (7) is then practically uni-
ormly distributed in �0,2	�. In consequence, averaging
he short-exposure phase measurements (7) does not im-
rove the signal-to-noise ratio (SNR).
In phase referencing techniques (see [9]), the turbulent

istons are measured in order to subtract them in Eq. (7).
owever powerful and promising, these methods require

pecific hardware and are not feasible for all sources. The
nly other way to obtain exploitable long-exposure data
hen is to form piston-free short-exposure observables be-
ore the averaging.

. Piston-Free Short-Exposure Observables
iston-free short-exposure phase observables are quanti-

ies f��data�t�� in which the turbulent term B��t� cancels
ut:
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f��data�t�� = f���x,t� + B��t�� = f���x,t��. �8�

or an interferometric array of three telescopes or more,
he closure phases [10] are one famous example, in which
is a linear operator performing triplewise summation of

he phases. For any set of three telescopes �Tk ,Tl ,Tm�, the
hort-exposure visibility phase data are

�
�kl

data�t� = �kl�x,t� + �l�t� − �k�t� + noise�2	�,

�lm
data�t� = �lm�x,t� + �m�t� − �l�t� + noise�2	�,

�mk
data�t� = �mk�x,t� + �k�t� − �m�t� + noise�2	�,

 �9�

nd the turbulent pistons cancel out in the closure phase
efined by

�klm
data�t� � �kl

data�t� + �lm
data�t� + �mk

data�t� + noise�2	�

= �kl�x,t� + �lm�x,t� + �mk�x,t� + noise�2	�

� �klm�x,t� + noise�2	�. �10�

e have the following properties:
• The set of all three-telescope closure phases that can

e formed using a complete array is generated by the
Nt−1��Nt−2� /2 closure phases �1kl

data�t�, k� l, i.e., the clo-
ure phase that includes telescope T1 (indeed, �klm

data

�1kl
data+�1lm

data−�1km
data). In what follows, these canonical clo-

ure phases are grouped together in a vector �data, and C
enotes the linear closure operator such that C�data

�data (see Appendix A).
• If f is a continuous differentiable function verifying

roperty (8), then

f��� = g�C��, �11�

here g is some continuous differentiable function. In
ther terms, there is essentially no operator other than
he closure operator that cancels out the effect of turbu-
ence on short-exposure visibility phases (this property
olds only in the monochromatic case).
The proof of the second property is given in Appendix

.

. Long-Exposure Observables Data Model
o minimize the effect of noise, one is led to average short-
xposure measurements into long-exposure observables,
hosen so that they are asymptotically unbiased. The av-
raging time must be short enough with respect to the
arth’s rotation so that the baseline does not change, and

ong enough to reach an acceptable SNR. The averaged
uantities are generally these:
• averaged squared amplitudes sdata�t�= �adata�t+��2��,
• averaged bispectra V1kl

data�t�= �y1k
data�t+�� ·ykl

data�t+��
yl1

data�t+����, k� l. Squared amplitudes are preferred to
mplitudes because their bias can be estimated and sub-
racted from the data. Short-exposure bispectra are con-
inuous differentiable functions verifying property (8) and
o correspond to a particular choice of g in Eq. (11). In the
bsence of noise, the averaged bispectrum amplitudes are
edundant with the averaged squared amplitudes. Al-
hough they should be useful in low-SNR conditions, av-
raged bispectrum amplitudes are not considered in what
ollows. The averaged bispectrum phases �1kl

data�t�, k� l
onstitute unbiased long-exposure closure phase estima-
ors. As such, they are linked to the object phases ��x , t�
hrough

�data�t� = C��x,t� + noise�2	�. �12�

t is shown in Appendix A that the kernel of the closure
perator C is of dimension �Nt−1�. Hence Eq. (12) implies
hat optical interferometry through turbulence has to
eal with partial phase information. This result can also
e obtained by counting up phase unknowns for each in-
tant of measurement t: there are Nt�Nt−1� /2 unknown
bject visibility phases and �Nt−1��Nt−2� /2 observable
ndependent closure phases, which results in �Nt−1�

issing phase data. As is well known in the radio inter-
erometric community, the greater the number of aper-
ures in the array, the smaller the proportion of missing
hase information.
The long-exposure observables considered in this paper

re noisy squared amplitudes sdata�t� and closure phases
data�t�. The only statistics usually available are the vari-
nces for each observable (as, for instance, in the OIFITS
ata exchange format [11]). The assumed noise distribu-
ion is consequently zero-mean white Gaussian:

	sdata�t� = a2�x,t� + snoise�t�, snoise�t� � N�0,Rs�t��,

�data�t� = C��x,t� + �noise�t��2	�, �noise�t� � N�0,R��t��.�
�13�

he matrices Rs�t� and R��t� are diagonal, with variances
elated to the integration time, although correlations may
e produced by the use of the same reference stars in the
alibration process [12].

. Bayesian Reconstruction Methods
his approach first forms the anti-log-likelihood accord-

ng to model (13):

Jdata�x� = �
t

Jdata�x,t� = �
t

�s�t�
2 �x� + ���t�

2 �x�, �14�

here �s�t�
2 �x�=sdata�t� denotes the classical �2 statistic

sdata�t�−�2�x , t��TRs�t�
−1 �sdata�t�−�2�x , t��. Closure terms

��t�
2 �x� are a weighted quadratic distance between com-
lex phasors [13] instead of a �2 statistic over closure
hase residuals. One then associates Jdata with a regular-
zation term to account for the incompleteness of the data
n such inverse problems and minimizes the composite
riterion

J�x� = Jdata�x� + Jprior�x� �15�

nder the following constraints:

∀�p,q�, x�p,q� � 0,

�
p,q

x�p,q� = 1. �16�

he first requires positivity of the sought object, and the
econd is a constraint of unit flux. Indeed, fringe visibili-
ies are by definition flux-normalized quantities [i.e., nor-
alized by the FT of the object at the null frequency; see
q. (3)], so the data are independent of the total flux of

he sought object (of course an interferometer is sensitive
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o the total flux of the source, but this last value is not
ontained in the fringe visibility itself).

The regularization term Jprior is chosen to enforce some
roperties of the object that are known a priori (smooth-
ess, spiky behavior, positivity, etc.) and should also ease
he minimization. Simple and popular regularization
erms are convex separable penalizations of the object
ixels (i.e., white priors) or of the object spatial deriva-
ives (for instance, first-order derivative or gradient). In
hat follows, we quickly describe the prior terms used in

his paper. These priors are more extensively described
nd compared in [14]. For a general review on regulariza-
ion, see [15].

Entropic priors belong to the family of white priors and
ften allow one to obtain a clean image while preserving
ts sharp spiky features, whereas quadratic penalization
ends to soften the reconstructed map. The white
uadratic-linear (or L2L1

w) penalization given by

L2L1
w�x� = 2�

p,q

x�p,q�

s
− ln�1 +

x�p,q�

s
� �17�

hat we use in Section 5 leads to a kind of entropic regu-
arization, in the sense of [16]. We propose a nominal set-
ing of the two parameters  and s:

s = 1/Npix;  = 1. �18�

As regards regularization based on the object’s spatial
erivatives, we shall consider here only quadratic penal-
zation, but convex quadratic-linear L2L1 penalization
unctions could also be invoked.

Reference [17] is one of the works that adopts such a
ayesian approach for processing OLBI using a con-
trained local descent method to minimize Eq. (15). A con-
ex data criterion J, i.e., such that J�k ·x1+ �1−k� ·x2�
k ·J�x1�+ �1−k� ·J�x2�, ∀x1 ,x2, ∀k� �0,1�, has no local
inima, which makes the minimization much easier. Un-

ortunately, the criterion J is nonconvex. To be more pre-
ise, the difficulty of the problem can be summed up as
ollows:

(i) The small number of Fourier coefficients makes the
roblem underdetermined. Here the regularization term
nd the positivity constraint can help by limiting the high
requencies of the reconstructed object [6].

(ii) Closure phase measurements imply missing phase
nformation and make the Fourier synthesis problem non-
onvex. Adding a regularization term does not generally
orrect the problem [18].

(iii) Phase and modulus measurements with additive
aussian noise lead to a non-Gaussian likelihood and a
onconvex log-likelihood with respect to x. As a conse-
uence, even with no missing phases, some approxima-
ion of the real observable statistics is necessary to get a
onvex data fidelity term. This data conversion from polar
o Cartesian coordinates, which is commonly used in the
eld of radar processing [19], has been studied only re-
ently in OLBI [20]; see Subsection 3.C.

These characteristics imply that optimizing J by a local
escent algorithm can work only if the initialization se-
ects the “right” valley of the criterion. The design of a
ood initial position is very case dependent and will not
e extensively addressed here. The other key aspects are
hen the followed path, i.e., the minimization method, and
he shape of the function to minimize, i.e., the behavior of
he criterion x�J�x�. This paper addresses both aspects:

• We design a specific OLBI criterion J�x ,�� where two
ets of variables appear explicitly, one in the spatial do-
ain x, describing the sought object, and another in the
ourier phase domain �, which accounts for the missing
hase information. This specific criterion is designed to
olve (iii), i.e., so that for a known �, the criterion is con-
ex with respect to x. In other words, if we had all the
omplex visibility phase measurements instead of just the
losure phases, our criterion x�J�x ,�� would be convex;

• We adopt an alternate minimization method, working
n the two sets of variables. This approach can be related
o “myopic” approaches of some inverse problems, where
issing data concerning the instrumental response are
odeled and sought for during the inversion [21]. Alter-
ate minimization methods are inspired by self-
alibration methods in radio interferometry and have
een used in optical interferometry by Lannes et al. [6].
owever, the criterion used in [6] was essentially im-
orted from radio interferometry and does not match
LBI data model [13]. Our main contribution is to derive
criterion that accounts for data model (13), while allow-

ng an efficient alternate minimization. This construction
s the subject of the next section.

. EQUIVALENT MYOPIC MODEL FOR
ELF-CALIBRATION
he aim of this section is to approximate the data model
f Eq. (13):

sdata�t� = a2�x,t� + snoise�t�, snoise�t� � N�0,Rs�t��,

�19�

�data�t� = C��x,t� + �noise�t��2	�,

�noise�t� � N�0,R��t�� �20�

y a myopic linear model with additive complex Gaussian
oise of the following form:

ydata�t� = F��t� · H�t�x + ynoise�t�, �21�

here the operator · denotes componentwise multiplica-
ion and F��t� is a vector of phasors depending on phase
berration parameters ��t�, which are defined in Subsec-
ion 3.B. This will be done in three steps:

• Subsection 3.A is devoted to the derivation of the ob-
ervation model for the pseudo amplitude term �data�t�
rom Eq. (19).

• Subsection 3.B is devoted to the derivation of the ob-
ervation model for the pseudo phase term �data�t� from
q. (20).
• Subsection 3.C shows how to combine pseudo phase

nd pseudo amplitude models in a complex model such as
q. (21) while solving problem (iii) of Subsection 2.E.

. Pseudo Amplitude Data Model
n Eq. (19), we have assumed a Gaussian distribution for
data�t� around s�x , t�, which is questionable, since
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quared amplitudes should be nonnegative. However,
uch a statistic model is acceptable provided that the
robability of a negative component of sdata�t� is very
eak. For uncorrelated measurements, this assumption

orresponds to mean values much greater than the corre-
ponding standard deviation. Appendix D shows how to
uild the mean and covariance matrix of the square root
f such a distribution. The mean vector is taken as the
seudo amplitude data adata�t� and the covariance matrix
alled Ra�t�.

Observation model (19) can then be approximated by
he following pseudo amplitude data model:

adata�t� = a�x,t� + anoise�t�, anoise�t� � N�0,Ra�t��.

�22�

. Pseudo Phase Data Model
e start from a generalized inverse solution to the phase

losure equation of Eq. (20). The generalized inverse C† of
, defined by C†�CT�CCT�−1, is such that CC†=Id. By
pplying it on all the terms of Eq. (20), we obtain

C†�data�t� = C†C��x,t� + C†�noise�t� + 2	C†�, �23�

here � is a vector of integers to account for the fact that
ach phase component is measured modulo 2	. We define

�data�t� � C†�data�t�, �24�

�ker�t� � �C†C − Id���x,t� + 2	C†� �25�

nd obtain

�data�t� = ��x,t� + �ker�t� + C†�noise�t�. �26�

ector �ker�t� belongs to the 2	-wrapped kernel of opera-
or C:

C�ker�t� = �CC†

=Id
C − C���x,t� + 2	CC†

=Id
� = 2�	 = 0�2	�.

As shown in Appendix C, if �ker=0�2	�, there exists a
eal vector ��t� of dimension Nt−1 such that �ker�t�
B̄��t��2	�, where B̄ is obtained by removing the first col-
mn of operator B. So we have

�data�t� = ��x,t� + B̄��t� + C†�noise�t��2	�. �27�

ow the problem is that C†�noise�t� is a zero-mean ran-
om vector with a singular covariance matrix:

R��t�
0 � C†R��t�C†T.

o obtain a strictly convex log-likelihood, we have to ap-
roximate this term by a proper Gaussian vector �noise�t�,
ith an invertible covariance matrix R��t� chosen so as to

orrectly fit the second-order statistics of the noise in
hase closure measurement equation (20). This last re-
uirement can be written as the following equation:

CR��t�CT = R��t�. �28�

n other words, we are led to choose an invertible covari-
nce matrix R��t� so as to mimic the statistical behavior of
he closures, which is expressed by Eq. (28).

We propose to modify matrix R0 by setting its nondi-
��t�
gonal components to 0, i.e., to use the following diagonal
atrix:

�R��t��ij = 	3 · �R��t�
0 �ij if i = j

0 if i � j� . �29�

he factor 3 allows us to preserve the total weight of the
hase term in the log-likelihood by satisfying the condi-
ion

�
i,j


�R��t��ij
 = �
i,j


�R��t�
0 �ij
.

here are several ways of choosing R��t�, and we propose
his particular choice without claiming it is optimal. Note
hat the myopic model derived in what follows can accom-
odate to any choice of a proper (i.e., invertible) covari-

nce matrix R��t�.
With Eqs. (24), (27), and (29), we obtain the visibility

hase pseudo data model:

�data�t� = ��x,t� + B̄��t� + �noise�t��2	�,

�noise�t� � N�0,R��t��. �30�

. Pseudo Complex Visibility Data Model
athering Eqs. (22) and (30), we have finally approxi-
ated the data model [Eqs. (19) and (20)] by

�
adata�t� = a�x,t� + anoise�t�,

�data�t� = ��x,t� + B̄��t� + �noise�t��2	�,

with anoise�t� � N�0,Ra�t��, �noise�t� � N�0,R��t��.

�31�

e form pseudo complex visibility measurements ydata�t�
efined by

ydata�t� � adata�t� · ei�data�t�. �32�

he approach proposed in [20], which we recall and gen-
ralize in Appendix E, is based on an approximated com-
lex visibility data model:

ydata�t� = H�t�x · eiB̄��t� + ynoise�t�. �33�

his is exactly the sought model stated at the beginning
f this section in Eq. (21), with F��t�=eiB̄��t�. We now de-
ne the myopic observation model as follows:

ym�x,��t�� � H�t�x · eiB̄��t�. �34�

As shown in Appendix E, the mean value ȳnoise�t� and
ovariance matrix Rynoise�t� of the additive complex noise
erm ynoise�t� are carefully designed so that the corre-
ponding data likelihood criterion is convex quadratic
ith respect to the complex ym�x ,��t�� while remaining

lose to the real nonconvex model. To illustrate these
roperties, we consider one complex visibility and plot in
he complex plane the distribution of ydata�t� around
m�x ,��t�� for the true noise distribution—i.e., a polar
aussian noise in phase and modulus—and our Cartesian
aussian approximation (see Fig. 1) In particular, the “el-

iptic” covariance matrix we propose (which yields elliptic
ontour plots in Fig. 1) is preferable to the more classical
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circular” approximation that appears in previous contri-
utions on OLBI [22]. The latter can be described by half
s many parameters as needed for the elliptic one (one ra-
ius for a circle, instead of a short axis and a long axis for
n ellipsis), but it is clearly less accurate [20] (such a
oise statistics description has also been investigated for
he complex bispectra in the OIFITS data exchange for-
at [11]).
From Eq. (33), we build Chi-2 statistics over real and

maginary parts of the observation equation

�y�t�
2 �x,��t��

� �Re�ydata�t� − ym�x,��t�� − ȳnoise�t��

Im�ydata�t� − ym�x,��t�� − ȳnoise�t���T


 Rynoise�t�
−1�Re�ydata�t� − ym�x,��t�� − ȳnoise�t��

Im�ydata�t� − ym�x,��t�� − ȳnoise�t��� .

nd we finally propose the myopic goodness-of-fit crite-
ion:

Jdata�x,�� = �
t

Jdata�x,��t�,t� = �
t

�y�t�
2 �x,��t��. �35�

e can now design a myopic Bayesian approach to the re-
onstruction problem by combining the data term with a
egularization term along the lines of Subsection 2.E:

J�x,�� = Jdata�x,�� + Jprior�x�. �36�

he next section describes an alternate minimization
echnique applied to regularized criterion (36).

O

Re

Im

Noise statistics

data

approximation

Elliptic Gaussian

ig. 1. (Color online) Contour plots of a polar Gaussian distri-
ution and of its Cartesian Gaussian approximation.
. WISARD

n this section, we describe WISARD, standing for Weak-
hase Interferometric Sample Alternating Reconstruction
evice, a self-calibration method for OLBII.

. Global Structure of WISARD
ISARD is made of four major blocks:
• A first block recasts the raw data (i.e., closure phases

nd squared visibilities) in myopic data (i.e., phases and
oduli) as described in Subsections 3.A and 3.B.
• A second “convexification block” computes a Gaussian

pproximation of the pseudo visibility data model as de-
cribed in Subsection 3.C.

• A third block builds a guess for the object x and ab-
rrations � (i.e., a good starting point).

• Finally, the self-calibration block performs the mini-
ization of regularized criterion (36), under constraints

16). It alternates optimization of the object for given ab-
rrations and optimization of the aberrations for the cur-
ent object.

The structure of WISARD is sketched in Fig. 2. The prin-
iples that underline the three first blocks of WISARD have
een described in previous sections, while details on the
elf-calibration minimization are gathered in the next
ne.

. Self-Calibration Block
n the following, we describe the three key components of
he self-calibration block.

Minimization with respect to x. The criterion Jdata�x ,��
e have derived is quadratic and hence convex with re-

pect to the object x. Hence the minimization versus x
oes not raise special difficulties.
Minimization with respect to �. Jdata�x ,�� is the sum of

erms involving only measurements obtained at one time
nstant t [Eq. (35)]:

Jdata�x,�� = �
t

Jdata�x,��t�,t�.

ecause the time between two measurements is much
reater than the turbulence coherent time (around

Object step

Aberration step

datas dataβ sR βR

dataa dataφ aR φR

yRdatay

0x
Initialization :

Recasting

Convexification

Self−calibration

Reconstruction

guess

Raw data

Myopic pseudo−data

Myopic approx. data

0α

Fig. 2. (Color online) WISARD algorithm loop.
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0 ms), aberrations ��t� at two different instants are sta-
istically independent. We can then solve separately for
ach set of ��t�, which dramatically reduces the complex-
ty of the minimization. The number of ��t� components to
olve for is �Nt−1� and the minimization is delicate, as
he criterion exhibits periodic structures that have been
tudied in [22].

However, exact minimization is affordable for a three-
elescope interferometric array. In this case we have to
erform several two-parameter minimizations, and each
ne can be efficiently initialized by an exhaustive search
n a 2D grid, which ensures we avoid local minima. On
he other hand, when Nt gets high enough, e.g., 6, then
he number of ��t� to solve for, e.g., 5, gets small com-
ared to the number of closure phases available, e.g., 15.
ith a three-telescope array, 2/3 of the phase information

s missing, whereas with a six-telescope array, only 1/3 of
he phase information is missing. In this last case, which
orresponds to the processing of synthetic data presented
n Subsection 5.A, the reconstructions were straightfor-
ard, and no effects of the local minima in � were wit-
essed.
In other words, coping with the ambiguities in �, for in-

tance, with the specific criterion proposed in [22], may be
ecessary only for Nt=4 or Nt=5. For Nt=3, an exhaus-
ive search is possible, and for Nt�6, ambiguities in � do
ot have, according to our experience, a major impact on
econstruction.

Starting point: object and aberration guess x0 and �0. If
parametric model of the observed stellar source is not

vailable, the object starting point is a mean square solu-
ion, from which we extract the positive part. The first
tep in the self-calibration block is a minimization with
espect to � for x=x0.

. RESULTS
his section presents some results of processing by the
ISARD algorithm, with both synthetic and experimental
ata.

Fig. 3. (Color online) Synthetic object (right) and freq
. Processing of Synthetic Data
he first example takes synthetic interferometric data

hat were used in the international Imaging Beauty Con-
est organized by P. Lawson for the International Astro-
omical Union (IAU) [23]. These data simulate the obser-
ation of the synthetic object shown in Fig. 3 with the
avy Prototype Optical Interferometer (NPOI) [24] six-

elescope interferometer. The corresponding frequency
overage, shown in Fig. 3, has a structure in arcs of circles
ypical of the supersynthesis technique, which consists in
epeating the measurements over several nights of obser-
ation so that the same baselines access different mea-
urement spatial frequencies because of the Earth’s rota-
ion. In total, there are 195 square visibility modules and
30 closure phases, together with the associated vari-
nces.
Six reconstructions obtained with WISARD are shown in

ig. 4. On the upper row is a reconstruction using a qua-
ratic regularization based on a power spectral density
odel in 1/ 
u
3 for a weak, a strong, and a correct regu-

arization parameter. The latter gives a satisfactory level
f smoothing but does not restore the peak in the center of
he object. The peak is visible in the under-regularized
econstruction on the left but at the cost of too high a
esidual variance.

The reconstruction presented on the lower row is a good
rade-off between smoothing and restoration of the cen-
ral peak thanks to the use of the white L2L1

w prior term
ntroduced in Subsection 2.E. The automatically set pa-
ameters [Eq. (18)] are very satisfactory (left), and a light
uning (center and right) allows an even better recon-
truction. The goodness of fit of the L2L1

w reconstruction
an be appreciated in Fig. 5. The crosses (red online) show
he reconstructed visibility moduli (i.e., of the FT of the
econstructed object at the measurement frequencies),
nd the squares (blue online) are the moduli of the mea-
ured visibilities. The difference between the two,
eighted by 10 times the standard deviation of the
oduli, is shown as the dotted curve. The mean value of

his difference is 0.1, which shows a good fit (to within
�).

coverage (left) from the Imaging Beauty Contest 2004.
uency
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ig. 4. (Color online) Reconstructions with WISARD. Upper row, under-regularized quadratic model (left), over-regularized quadratic
odel (center), quadratic model with correct regularization parameter (right). Lower row, white L2L1

uu model with automatically set scale
nd delta parameters (left), white L2L1

uu model with half-scale (center), white L2L1
uu model with half-delta (right). Each image field is
2.1
12.1 mas.
Fig. 5. (Color online) Goodness of fit at WISARD convergence.
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. Processing of Experimental Data
ere we present the reconstruction of the star � Cygni

rom experimental data using the WISARD algorithm. The
ata were obtained by S. Lacour and S. Meimon under the
eadership of G. Perrin during a measuring campaign on
he IR/Optical Telescope Array (IOTA) interferometer [25]
n May 2005. As already mentioned, each measurement
as to be calibrated by observation of an object that acts
s a point source at the instrument’s resolving power. The
alibrators chosen were HD 180450 and HD 176670.

The star � Cygni is a Mira-type star, Mira itself being
n example of such stars. Perrin et al. [26] propose a
odel of Mira-type stars, composed of a photosphere, an

mpty layer, and a thin molecular layer. The aim of the
ission was to obtain images of � Cygni in the H band

1.65 �m±175 nm� and, in particular, to highlight pos-
ible assymmetric features in the structure of the molecu-
ar layer.

Figure 6 shows, on the left, the u−v coverage obtained,
.e., the set of spatial frequencies measured, multiplied by
he observation wavelength. Because the sky is habitually
epresented with the west on the right, the coordinates
sed are, in fact, −u ,v. The domain of the accessible u
v plane is constrained by the geometry of the interfer-
meter and the position of the star in the sky. The “hour-
lass” shape is characteristic of the IOTA interferometer,
nd entails nonuniform resolution that affects the image
econstruction, shown on the right. The reconstructed an-
ular field has sides of 60 mas. In addition to the positiv-
ty constraint, the regularization term used is the L2L1

w

erm described in Subsection 2.E. The interested reader
ill find an astrophysical interpretation of this result in

27].

. CONCLUDING COMMENTS
e have proposed a complete and precise self-calibration

pproach to optical interferometry image reconstruction.
fter pointing out the data model specificities in the OLBI
ontext, we have emphasized the sources of underdeter-
inations, which make a classical Bayesian criterion de-
cent method critical. Namely, the main problems are the
hase underdetermination caused by turbulence effects,
nd, as noted only recently, the polar coordinate structure
f the data model.

We have built a specially designed approximate myopic
ata model in order to derive a self-calibration method.
pecial care was given to the design of the second-order
tatistics of the myopic model, an aspect that was ignored
n previous related works.

We have extended our previous work on polar data con-
ersion [20] and proposed a convex approximation of the
oise model that reduces the number of local minima of
he criterion to minimize.

We also addressed integer ambiguities induced by clo-
ure phase wrapping, which are classical when dealing
ith phase data, and have discussed their impact on the

mage reconstruction quality: for three-telescope data, we
ave proposed an exhaustive search method, and we have
itnessed that these ambiguities do not raise any particu-

ar problem when processing the interferometer data of
ix or more telescopes. Concerning the remaining case of
our to five telescopes, the work by Lannes [22] should be
orth investigating. On the other hand, global minimiza-

ion methods were left aside because of their intensive
omputation needs. As computer performance increases,
hese methods might be, in the years to come, an appro-
riate way to deal with local minima.
All these developments allowed us to propose WISARD, a

elf-calibration method for OLBII reconstruction and to
emonstrate its efficiency on simulated data.
Finally, WISARD was also used to successfully process

eal astronomical OLBI data sets. These results were
ade possible thanks to a close partnership with the as-

ronomers Sylvestre Lacour and Guy Perrin of the Obser-
atoire de Paris Meudon, within the PHASE partnership
Partenariat Haute résolution Angulaire Sol-Espace). In-
eed, an accurate astronomical model of the observed
tellar object is a precious guideline for reconstructing a
omplex image from OLBI data. From the author’s point
baseline (m)

baseline (m) 60 mas x 60 mas

Fig. 6. (Color online) Frequency coverage (left) and reconstruction of the star � Cygni (right).
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f view, such a collaboration is essential to the success of
LBII techniques.

PPENDIX A: BASELINE AND CLOSURE
PERATORS C AND B

et Nt be the number of telescopes of the interferometric
rray. We have the following definitions:

B2 � �− 1 1�, �A1�

BNt
� �− 1Nt−1 IdNt−1

O BNt−1
� , �A2�

CNt
� �− BNt−1 Id��Nt−1��Nt−2��/2� , �A3�

or Nt�3.
In what follows, we prove that ker C=im B.
We have CNt

BNt
=0, so

im B � ker C. �A4�

t is straightforward to prove by recurrence that BNt
·1Nt

0, which yields rank BNt
�Nt−1. Because BNt

contains
dNt−1, we gather

dim im B � rank B = Nt − 1. �A5�

ere CNt
contains Id�Nt−1��Nt−2�/2, which yields rank CNt

�Nt−1��Nt−2� /2, or

dim ker CNt
� Nt − 1. �A6�

ith Eqs. (A4)–(A6), we gather

ker C = im B. �A7�

PPENDIX B: CHARACTERIZATION OF THE
ASELINE PHASE-INDEPENDENT
PERATORS
ere we prove that any continuous differentiable function
verifying property (8)

f�� + B�� = f���, ∀ ��,��

s such that f���=g�C��, where C has more columns than
ows, so its pseudo inverse is defined by C†�CT�CCT�−1

nd verifies

CC† = Id �B1�

nd thus

CC†C − C = 0 ⇒ C�C†C� − �� = 0,

∀�⇒
A7

∃ �,�C†C� − �� = B�,

∀� ⇒ ∃ �,� = C†C� − B�, ∀ �.

ith this we obtain that any f verifying property (8) is
uch that

f��� = f�C†C� − B�� = f�C†C�� = g�C��.
PPENDIX C: WRAPPED KERNEL OF
PERATOR C

he kernel of operator C is given by ker C=im B [Eq.
A7)]. With dimensional arguments, it is easy to see that

im B = im B̄,

here B̄ is obtained by removing the first column of op-
rator B, so we have

ker C = im B̄. �C1�

Let us now characterize the set of �ker such that

C�ker � 0�2	�.

ecause C has integer components, �ker can be consid-
red modulo 2	. With Eq. (C1), we obtain

∃�1, �ker � C†�0�2	�� + B̄�1�2	�. �C2�

ecause B̄ has integer components, �1 can be considered
odulo 2	. The issue here is to evaluate the C†�0�2	��

erm, i.e., the value of C†�2	��, with � any integer vector.
Equations (A1) show that C= �M 
Id�. The integer vec-

or

	 � �0

��
s then such that

C	 = �� 
Id��0

�� = �.

hen we have

o Eq. (C2) yields

∃�,�ker � B̄��2	�. �C3�

PPENDIX D: SQUARE ROOT OF A
AUSSIAN DISTRIBUTION

et us assume we measure the squared value s of a posi-
ive value a, with an additive Gaussian noise:

sdata = a2 + snoise, �D1�
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ith snoise being zero-mean Gaussian with the variance

s
2. Let â be the estimator of a from sdata defined by

â = 	�sdata if sdata � 0

0 else � ,

here â can be seen as pseudo data. The data model of â
erived from Eq. (D1) is not additive Gaussian. As will be
hown in Appendix E, an optimal Gaussian approxima-
ion of the data model of â would be

â = a + anoise, �D2�

ith anoise a Gaussian noise with a mean equal to �â� and
standard deviation �Var�â�.
We have studied the behavior of the mean �â� and stan-

ard deviation �Var�â� of this estimator for various val-
es of a2, with a unit �s (see Figs. 7 and 8). We can dis-
inguish two regimes for �â�:

• A low-mean regime, where a2��s /6: a nonnegligible
art of the distribution of sdata around a2 is in the nega-
ive domain. Because â estimates a null value for a when
data is negative, its mean will depend mainly on the
idth of the Gaussian wings. A good approximation of �â�

s ��s /6.
• A high-mean regime, where a2��s /6: most of the

istribution of sdata around a2 is in the positive domain.
he fact that â estimates a null value for a when sdata

0 does not affect its mean �â�, which is close to a. Be-
ause a is not known, we choose �â�=�sdata. We can dis-
inguish the same two regimes for �Var�â�. However, the
ransition is around �s:

• When a2��s, the fact that â estimates a null value
or a when sdata is negative tends to diminish its standard
eviation, which we approximate by �Var�â����s /2.
• In the high-mean regime, where a2��s, most of the

istribution of sdata around a2 is in the positive domain,
nd �Var�â� is close to the classical expression. This ex-
ression corresponds to a first-order expansion in �a:

�a + �a�2 = a2 + �s ⇒ 2a�a � �s,

here �s /2a. Because a is not known, we choose
Var�â�=�s /2�sdata. We then propose the pseudo data
odel

adata = a + anoise,

ith

ig. 7. (Color online) Behavior of �â� in function of a2 with a
nit �s.
adata = 	�sdata if sdata � 0

0 else �
nd anoise a Gaussian noise with mean and standard de-
iation defined by

ā =	��s/6 if sdata � �s/6,

�sdata if sdata � �s/6
� ,

�a = �
��s/2 if sdata � �s

�s

2�sdata
if sdata � �s .

e also decide to discard the data such that sdata�−�s.

PPENDIX E: CARTESIAN GAUSSIAN
PPROXIMATION TO A POLAR GAUSSIAN
ISTRIBUTION

f we define

y��t��x,t� � H�t�x · eiB̄��t�, �E1�

q. (31) reads

�adata�t� = 
y��t�
�x,t� + anoise�t�, anoise�t� � N�0,Ra�t��,

�data�t��
2	

arg y��t��x,t� + �noise�t�, �noise�t� � N�0,R��t��.
�E2�

. General Expression
e consider a polar distribution of a Gaussian vector y of
odulus a and phase �:

�data = �̄ + �noise, �E3�

adata = ā + anoise, �E4�

here �noise and anoise are zero-mean real Gaussian vec-
ors of covariance matrices Ra and R� (the vectors �noise

nd anoise are assumed uncorrelated).
With the definitions

ig. 8. (Color online) Behavior of �Var�â� in function of a2 with
unit �s.
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�
ȳ � ā exp i�̄,

ynoise � ydata − ȳ,

yrad
n � Re�ynoisee−i�̄�,

ytan
n � Im�ynoisee−i�̄�,

y� noise � �yrad
n

ytan
n � ,

 �E5�

e gather

	yrad
n = �ā + anoise�cos �noise − ā,

ytan
n = �ā + anoise�sin �noise. � �E6�

complex vector is Gaussian if and only if each of its com-
onents is Gaussian. A complex is Gaussian if and only if,
n any Cartesian basis, its two components are Gaussian.
o y is Gaussian if and only if ȳnoise is Gaussian, which is
ot the case [20]. In what follows, we show how to opti-
ally approximate the distribution of ȳnoise by a Gaussian

istribution.

. Gaussian Approximation
e characterize our Cartesian additive Gaussian approxi-
ation, i.e., its mean �ȳnoise� and covariance Rȳnoise, by
inimizing the Kullback–Leibler distance between the

wo noise distributions, which gives [20]

��y� noise� = E	�yrad
n

ytan
n �� = �ȳrad

n

ȳtan
n � ,

Ry�noise = E	�ȳrad
n − yrad

n

ȳtan
n − ytan

n ��ȳrad
n − yrad

n

ȳtan
n − ytan

n �T� , �E7�

nd we define

Ry�noise � �Rrad,rad Rrad,tan

Rrad,tan
T Rtan,tan

� .

or a zero-mean Gaussian vector �noise of covariance ma-
rix R�,

E�sin �i
noise� = 0,

E�cos �i
noise� = exp�−

R�ii

2
� ,

E�sin �i
noise sin �j

noise� = sinh R�ij

· exp�−
R�ii

+ R�jj

2
� ,

E�cos �i
noise cos �j

noise� = cosh R�ij

· exp�−
R�ii

+ R�jj

2
� ,

E�cos �i
noise sin �j

noise� = 0. �E8�

y combining Eq. (E7), (E5), (E6), and (E8), we obtain
E�yradi

n � = āi�e−R�ii
/2 − 1�,

E�ytani

n � = 0,

�Rrad,rad�ij = �āiāj�cosh R�ij
− 1� + Raij

cosh R�ij
�

· e−��R�ii
+R�jj

�/2�,

�Rrad,tan�ij = 0,

�Rtan,tan�ij = �āiāj + Raij
�sinh R�ij

· e−��R�ii
+R�jj

�/2�. �E9�

. Scalar Case
ow we make the additional assumption that both �noise

nd anoise are decorrelated, i.e.,

	Ra = Diag��a,i
2 �,

R� = Diag���,i
2 �.
�

e obtain

�Rrad,rad = Diag��rad,i
2 �,

Rtan,tan = Diag��tan,i
2 �,

Rrad,tan = 0,


ith

�rad,i
2 =

āi
2

2
�1 − e−��,i

2
�2 +

�a,i
2

2
�1 + e−2��,i

2
�,

�tan,i
2 =

āi
2

2
�1 − e−2��,i

2
� +

�a,i
2

2
�1 − e−2��,i

2
�. �E10�

In this case, we can plot for one complex visibility the
rue noise distribution—i.e., a Gaussian noise in phase
nd modulus—and our Gaussian approximation (see
ig. 1).
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