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1. INTRODUCTION

Optical long-baseline interferometry (OLBI) aims to com-
bine light collected by widely separated telescopes to ac-
cess angular resolutions beyond the diffration limit of
each individual aperture. Long-baseline interferometers
measure a discrete set of spatial frequencies of the ob-
served object, or Fourier data. Due to instrumental com-
plexity, current interferometers recombine only a few tele-
scopes, and even several nights of observation lead to a
very limited number of Fourier data; moreover, due to the
atmospheric turbulence, it is very difficult to get reliable
phase information from ground-based interferometry [1].
Hence OLBI has to deal with severe underdetermination
and missing phase information.

The classical answer to underdetermination is to use a
parametric approach, i.e., to search for an object entirely
described by a small set of parameters (for instance, a cir-
cular object with a parametric attenuation profile). With a
“good model,” such an approach allows a reliable and pre-
cise estimation of astrophysical parameters. A good model
should limit as much as possible the number of free pa-
rameters, while allowing a description of all the object’s
features, because parametric inversion cannot reveal un-
guessed features. The ) fit is often used as a model qual-
ity diagnosis, since an inadequate model will often result
in a poor fit to the data, thus revealing that a new model
(with more parameters or different parameters) is
needed. However, it does not reveal which new model
must be adopted.

As progress in instrumental issues gives access to bet-
ter frequency coverage, i.e., to potentially finer descrip-
tions of the object, the choice of the model becomes more
difficult. An alternate and complementary approach is
then nonparametric reconstruction, which we will call
“optical long-baseline interferometric imaging” (OLBII).
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Imaging means that the object is described by a large set
of parameters, such as coefficients of the object’s decom-
position in some spatial functional basis, while underde-
termination is tackled by regularization tools. Imaging is
useful to understand the structure of a complex object
when prior information is limited.

From the beginning, OLBII has been influenced by the
remarkable techniques developed in radio interferometry
with very large baselines (VLBI) [2]. For instance, the
“WIPE” OLBII technique of Lannes et al. [3] is inspired
by the well-known CLEAN method [4]. As regards the
missing phase problem, the self-calibration technique
proposed in radio interferometry by Cornwell and Wilkin-
son [5] underlies recent work in OLBII [6].

This paper intends to revisit the application of self-
calibration to OLBI. Our contribution is threefold:

1. We cast rigorously the OLBI data processing problem
into the self-calibration framework, with consideration of
the second-order statistics of the noise.

2. We propose WISARD (for Weak-phase Interferometric
Sample Alternating Reconstruction Device), a self-
calibration algorithm dedicated to OLBII, which uses the
proposed data model within a Bayesian regularization ap-
proach.

3. We demonstrate the efficiency of WISARD on a real as-
tronomical OLBI data set.

The paper is organized as follows: Section 2 describes
the observation model of OLBI, briefly presents a Baye-
sian approach, and discusses the main problems that are
encountered because of the incomplete OLBI data. Sec-
tion 3 is devoted to the derivation of a specific myopic
model, which achieves a good approximation of the data
model and leads to self-calibration techniques. One such
technique, WISARD, is proposed in Section 4. Results of
WISARD on simulated and real astronomical data sets are
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presented in Section 5. Our conclusions are given in Sec-
tion 6. Most mathematical derivations are gathered in the
appendixes.

2. REALISTIC OBSERVABLES IN OPTICAL
LONG-BASELINE INTERFEROMETRY

A. Ideal Interferometric Data

Here we describe the ideal data, i.e., without aberrations,
noise, or turbulence effects, produced by an N;-telescope
interferometer observing a monochromatic source with
wavelength \. The brightness distribution of the source is
denoted x(£), £ being angular coordinates on the sky. In-
dividual telescopes T, of the interferometer are located at

three-space positions O?l’k, and we denote r,(¢) the projec-

tion of Oﬁ‘k onto P, the plane normal to the pointing di-
rection. Because of the Earth’s rotation, the pointing di-
rection changes during an observing night, so these
projected vectors are time dependent.

Each pair (T},,T);) of telescopes yields a fringe pattern

. . t) .
with a 2D spatial frequency vkl(t)é%, where uy(t) is

the baseline '
wy(t) 2 r(t) - ry(t), (1)

that is, the projection of the vector T;;Tl onto P.

Measuring the position and contrast of these fringes
yields a phase qﬁﬁéta(t) and an amplitude aﬁéta(t), which
can be grouped together in a complex visibility:

. ,data
V() 2 a0y @)

According to the Van Cittert—Zernike theorem [7], com-
plex visibilities are ideally linked to the normalized Fou-
rier transform (FT) of x(€) at the 2D spatial frequency
vy,(t) through

datag) = (t)w 3)
Y T R (g)0)

The instrumental visibility #,;(¢) accounts from the many
potential sources of visibility loss: residual perturbations
of the wavefront at each telescope, differential tilts be-
tween telescopes, differential polarization effects, nonzero
spectral width, etc. In practice, the instrumental visibility
is calibrated on a star reputed to be unresolved by the in-
terferometer before the object of interest is observed and
is compensated for in the preprocessing of the raw data.
Thanks to this calibration step, we replace 7,;(¢) with 1 in
Eq. (3).

For the sake of clarity, we consider a complete
Ni-telescope array in what follows, i.e., one in which all
the possible two-telescope baselines can be formed simul-
taneously, and a nonredundant interferometer configura-
tion, where each baseline provides a different spatial fre-
quency. Extension to incomplete and redundant settings
is straightforward. Thus, at each time ¢, there are

(Nt> N(N;-1)
p= -

2 2 @

complex observation equations such as Eq. (3).
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Let us briefly introduce the discretized observation
model. The sought brightness distribution x is repre-
sented by the coefficients x of its projection onto some con-
venient spatial basis (box functions, sinc’s, wavelets, pro-
late spheroidal functions, etc). The normalized discrete-
continuous Fourier matrix H(¢) maps the chosen discrete
spatial representation into the real-valued instantaneous
frequency coverage {v; (t))}lsdeNt, and we further de-
fine

{a(x,n 2 |H(t)], “

d(x,t) £ arg{H(¢)x}.

B. Effect of Atmospheric Turbulence on Short-Exposure
Measurements

At optical wavelengths, atmospheric turbulence affects
phase measurements through path-length fluctuations.
The statistics of these fluctuations can be described by a
time-scale parameter, the coherence time 7, typically
around 10 ms, and by a space-scale parameter, the Fried
parameter r [[8]]. We assume that the diameter of the el-
ementary apertures is small relative to the Fried param-
eter or that each telescope is corrected from the effects of
turbulence by adaptive optics. The remaining turbulent
effects on the interferometric measurements can be seen
as a delay line between the two telescopes T}, and T},
which affects short-exposure phase measurements
through an additive differential piston ¢;(¢)— ¢ (2):

B(E) = dy(,0) + @ (t) - @4(t) + noise[27]  (6)
or, in a matrix formulation:
dPR(t) = p(x,t) + Be(t) + noise[27], (7)

where N, X N; operator B, called the baseline operator, is
defined in Appendix A.

Because the differential pistons are zero mean, one
might think that the object phase ¢(x,t) could be recov-
ered from Eq. (7) by averaging over many realizations of
the atmosphere. However, for a long baseline relative to
the Fried parameter, the optical path difference between
apertures introduced by turbulence may be very much
greater than the observation wavelength and thus lead to
random pistons much larger than 27. The 27-wrapped
perturbation that affects phase (7) is then practically uni-
formly distributed in [0,27]. In consequence, averaging
the short-exposure phase measurements (7) does not im-
prove the signal-to-noise ratio (SNR).

In phase referencing techniques (see [9]), the turbulent
pistons are measured in order to subtract them in Eq. (7).
However powerful and promising, these methods require
specific hardware and are not feasible for all sources. The
only other way to obtain exploitable long-exposure data
then is to form piston-free short-exposure observables be-
fore the averaging.

C. Piston-Free Short-Exposure Observables

Piston-free short-exposure phase observables are quanti-
ties f(¢%2(¢)) in which the turbulent term Be(t) cancels
out:
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F(6%2(1)) = f(p(x,t) + Be(t)) = flp(x,1)). (8)

For an interferometric array of three telescopes or more,
the closure phases [10] are one famous example, in which
f is a linear operator performing triplewise summation of
the phases. For any set of three telescopes (T},,7;,T,,), the
short-exposure visibility phase data are

HE2(E) = dpal,t) + @i(t) — @p(t) + noise[27],
() = ¢y, (x,8) + 0(8) — @(F) + n0ise[27],  (9)
BIH(E) = Ppp(0,8) + @4(t) — @y (t) + n0ise[277],

and the turbulent pistons cancel out in the closure phase
defined by

Blata) & gdatay) 4 gdata(y) 4 gdata(y) 4 noise[2m]
= G(,1) + P (@,8) + bp(x,2) + n0isE[277]
£ Bum(x,t) + noise[27]. (10)

We have the following properties:

e The set of all three-telescope closure phases that can
be formed using a complete array is generated by the
(Ny—1)(N,—2)/2 closure phases B?Z}a(t), k<l,i.e., the clo-
sure phase that includes telescope T; (indeed, Bgf‘,ff

=platay plata_ gata) 1, what follows, these canonical clo-
sure phases are grouped together in a vector 8%t and C
denotes the linear closure operator such that C¢data

= plata (see Appendix A).
e If fis a continuous differentiable function verifying

property (8), then
fl)=g(Ce), (11)

where g is some continuous differentiable function. In
other terms, there is essentially no operator other than
the closure operator that cancels out the effect of turbu-
lence on short-exposure visibility phases (this property
holds only in the monochromatic case).

The proof of the second property is given in Appendix
B.

D. Long-Exposure Observables Data Model
To minimize the effect of noise, one is led to average short-
exposure measurements into long-exposure observables,
chosen so that they are asymptotically unbiased. The av-
eraging time must be short enough with respect to the
Earth’s rotation so that the baseline does not change, and
long enough to reach an acceptable SNR. The averaged
quantities are generally these:

e averaged squared amplitudes s3%2(¢)=(a%2t(t + 7)2) |

e averaged bispectra dela(t) (ydata(t+ 7)- ydata(t+ 7)
y?f‘ta(t+7)>7, k<l. Squared amplitudes are preferred to
amplitudes because their bias can be estimated and sub-
tracted from the data. Short-exposure bispectra are con-
tinuous differentiable functions verifying property (8) and
so correspond to a particular choice of g in Eq. (11). In the
absence of noise, the averaged bispectrum amplitudes are
redundant with the averaged squared amplitudes. Al-
though they should be useful in low-SNR conditions, av-
eraged bispectrum amplitudes are not considered in what
follows. The averaged bispectrum phases B?Z}a(t), k<l
constitute unbiased long-exposure closure phase estima-
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tors. As such, they are linked to the object phases ¢(x,t)
through

BIt2(¢) = Cep(x,t) + noise[277]. (12)

It is shown in Appendix A that the kernel of the closure
operator C is of dimension (N;—1). Hence Eq. (12) implies
that optical interferometry through turbulence has to
deal with partial phase information. This result can also
be obtained by counting up phase unknowns for each in-
stant of measurement ¢: there are N{(N;—1)/2 unknown
object visibility phases and (Ny;—-1)(IN;—2)/2 observable
independent closure phases, which results in (N;-1)
missing phase data. As is well known in the radio inter-
ferometric community, the greater the number of aper-
tures in the array, the smaller the proportion of missing
phase information.

The long-exposure observables considered in this paper
are noisy squared amplitudes s92%2(¢) and closure phases
Bet2(¢). The only statistics usually available are the vari-
ances for each observable (as, for instance, in the OIFITS
data exchange format [11]). The assumed noise distribu-
tion is consequently zero-mean white Gaussian:

sdata(t) — a2(x,t) + snoise(t)’ snoise(t) — N(O,Rs(t)),
ﬂdata(t) — Cd)(x,t) + BHOise(t)[Q’ﬂ'], ﬁnoise(t) — N(O,R/;(t)) .
(13)

The matrices Ry and Rpg) are diagonal, with variances
related to the integration time, although correlations may
be produced by the use of the same reference stars in the
calibration process [12].

E. Bayesian Reconstruction Methods
This approach first forms the anti-log-likelihood accord-
ing to model (13):

Jdata(x) = 2 Jdata(x,t) = E Xi(;)(x) + Xzﬁ(t)(x), (14)
¢ ¢

where )(s(t)(x) =sd2t%a(s) denotes the classical y? statistic
(s d'“‘ta(t) @(x,1))"R,, )(sdata(t) a?(x,t)). Closure terms
Xﬁ(t)(x) are a welghted quadratic dlstance between com-
plex phasors [13] instead of a )2 statistic over closure
phase residuals. One then associates J92%2 with a regular-
ization term to account for the incompleteness of the data
in such inverse problems and minimizes the composite
criterion

J(x) = JIata(x0) 4 JPHOT () (15)

under the following constraints:

V(,q), x@p,q) =0,
> x(pq)=1. (16)
p,q

The first requires positivity of the sought object, and the
second is a constraint of unit flux. Indeed, fringe visibili-
ties are by definition flux-normalized quantities [i.e., nor-
malized by the FT of the object at the null frequency; see
Eq. (3)], so the data are independent of the total flux of
the sought object (of course an interferometer is sensitive
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to the total flux of the source, but this last value is not
contained in the fringe visibility itself).

The regularization term JP"° is chosen to enforce some
properties of the object that are known a priori (smooth-
ness, spiky behavior, positivity, etc.) and should also ease
the minimization. Simple and popular regularization
terms are convex separable penalizations of the object
pixels (i.e., white priors) or of the object spatial deriva-
tives (for instance, first-order derivative or gradient). In
what follows, we quickly describe the prior terms used in
this paper. These priors are more extensively described
and compared in [14]. For a general review on regulariza-
tion, see [15].

Entropic priors belong to the family of white priors and
often allow one to obtain a clean image while preserving
its sharp spiky features, whereas quadratic penalization
tends to soften the reconstructed map. The white
quadratic-linear (or LoLY) penalization given by

x(p,q) ( x(p,q)>
—In| 1+ (17)
so

s
that we use in Section 5 leads to a kind of entropic regu-
larization, in the sense of [16]. We propose a nominal set-
ting of the two parameters & and s:

LoLY (%) = 8,

p,q

s=1/Nyy; =1 (18)

As regards regularization based on the object’s spatial
derivatives, we shall consider here only quadratic penal-
ization, but convex quadratic-linear L,L; penalization
functions could also be invoked.

Reference [17] is one of the works that adopts such a
Bayesian approach for processing OLBI using a con-
strained local descent method to minimize Eq. (15). A con-
vex data criterion o/, i.e., such that J(k-x{+(1-%)-x9)
<k-J(x1)+(1-k)-J(x9), Vx1,x9, Yk €[0,1], has no local
minima, which makes the minimization much easier. Un-
fortunately, the criterion ¢/ is nonconvex. To be more pre-
cise, the difficulty of the problem can be summed up as
follows:

(i) The small number of Fourier coefficients makes the
problem underdetermined. Here the regularization term
and the positivity constraint can help by limiting the high
frequencies of the reconstructed object [6].

(i1) Closure phase measurements imply missing phase
information and make the Fourier synthesis problem non-
convex. Adding a regularization term does not generally
correct the problem [18].

(iii) Phase and modulus measurements with additive
Gaussian noise lead to a non-Gaussian likelihood and a
nonconvex log-likelihood with respect to x. As a conse-
quence, even with no missing phases, some approxima-
tion of the real observable statistics is necessary to get a
convex data fidelity term. This data conversion from polar
to Cartesian coordinates, which is commonly used in the
field of radar processing [19], has been studied only re-
cently in OLBI [20]; see Subsection 3.C.

These characteristics imply that optimizing / by a local
descent algorithm can work only if the initialization se-
lects the “right” valley of the criterion. The design of a
good initial position is very case dependent and will not
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be extensively addressed here. The other key aspects are
then the followed path, i.e., the minimization method, and
the shape of the function to minimize, i.e., the behavior of
the criterion x—¢J(x). This paper addresses both aspects:

e We design a specific OLBI criterion J(x, @) where two
sets of variables appear explicitly, one in the spatial do-
main x, describing the sought object, and another in the
Fourier phase domain «, which accounts for the missing
phase information. This specific criterion is designed to
solve (iii), i.e., so that for a known e, the criterion is con-
vex with respect to x. In other words, if we had all the
complex visibility phase measurements instead of just the
closure phases, our criterion x— J(x, @) would be convex;

e We adopt an alternate minimization method, working
on the two sets of variables. This approach can be related
to “myopic” approaches of some inverse problems, where
missing data concerning the instrumental response are
modeled and sought for during the inversion [21]. Alter-
nate minimization methods are inspired by self-
calibration methods in radio interferometry and have
been used in optical interferometry by Lannes et al. [6].
However, the criterion used in [6] was essentially im-
ported from radio interferometry and does not match
OLBI data model [13]. Our main contribution is to derive
a criterion that accounts for data model (13), while allow-
ing an efficient alternate minimization. This construction
is the subject of the next section.

3. EQUIVALENT MYOPIC MODEL FOR
SELF-CALIBRATION

The aim of this section is to approximate the data model
of Eq. (13):

s92() = a®(w,0) + 87°°°(t),  8"°(¢) ~ MO, Ry),
(19)
B () = Cola,t) + Bro°(t)[27],
B(t) ~ MO,R ) (20)

by a myopic linear model with additive complex Gaussian
noise of the following form:

yAE) = Fouy HOx +y™(), (21)

where the operator - denotes componentwise multiplica-
tion and F, is a vector of phasors depending on phase
aberration parameters «(t), which are defined in Subsec-
tion 3.B. This will be done in three steps:

e Subsection 3.A is devoted to the derivation of the ob-
servation model for the pseudo amplitude term ad2t(¢)
from Eq. (19).

e Subsection 3.B is devoted to the derivation of the ob-
servation model for the pseudo phase term ¢%t2(¢) from
Eq. (20).

e Subsection 3.C shows how to combine pseudo phase
and pseudo amplitude models in a complex model such as
Eq. (21) while solving problem (iii) of Subsection 2.E.

A. Pseudo Amplitude Data Model
In Eq. (19), we have assumed a Gaussian distribution for
sdata(s) around s(x,t), which is questionable, since
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squared amplitudes should be nonnegative. However,
such a statistic model is acceptable provided that the
probability of a negative component of sda%(z) is very
weak. For uncorrelated measurements, this assumption
corresponds to mean values much greater than the corre-
sponding standard deviation. Appendix D shows how to
build the mean and covariance matrix of the square root
of such a distribution. The mean vector is taken as the
pseudo amplitude data a9®?(¢) and the covariance matrix
called R ;).

Observation model (19) can then be approximated by
the following pseudo amplitude data model:

a®?(t) = a(x,t) + @),  a™ () ~ MO,R, ).
(22)

B. Pseudo Phase Data Model

We start from a generalized inverse solution to the phase
closure equation of Eq. (20). The generalized inverse C of
C, defined by C"2CT[CCT]}, is such that CCT=Id. By
applying it on all the terms of Eq. (20), we obtain

CTplata(s) = CTC p(x,t) + CTB(t) + 2mCle,  (23)

where « is a vector of integers to account for the fact that
each phase component is measured modulo 277. We define

V(1) £ CTBY(), (24)

() & (CTC -1d) p(x,t) + 277C ke (25)
and obtain
GV (t) = plx,t) + PT(E) + CTR(2). (26)

Vector ¢¥'(¢) belongs to the 27-wrapped kernel of opera-
tor C:

C*'(t) = (CCTC - C) p(x,t) + 27CC T, = 26 = 0[ 277].
=Id =Id

As shown in Appendix C, if ¢**=0[2], there exists a
real vector a(f) of dimension N,—1 such that @**(¢)

=Ba(t)[27], where B is obtained by removing the first col-
umn of operator B. So we have

¢%2(t) = p(x,t) + Balt) + C' o) 27].  (27)

Now the problem is that CTB¢(¢) is a zero-mean ran-
dom vector with a singular covariance matrix:
0 2 T

Ry, =C'RyC.
To obtain a strictly convex log-likelihood, we have to ap-
proximate this term by a proper Gaussian vector ¢™°*¢(¢),
with an invertible covariance matrix R 4 chosen so as to
correctly fit the second-order statistics of the noise in
phase closure measurement equation (20). This last re-
quirement can be written as the following equation:

In other words, we are led to choose an invertible covari-
ance matrix R 4 so as to mimic the statistical behavior of
the closures, which is expressed by Eq. (28).

We propose to modify matrix R?p(t) by setting its nondi-
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agonal components to 0, i.e., to use the following diagonal
matrix:

3-{RY, )y ifi=j
Ryl = T (29)
0 ifi #j
The factor 3 allows us to preserve the total weight of the
phase term in the log-likelihood by satisfying the condi-
tion

E |{R¢(t)}ij| = E |{R(,),>(t)}ij|-
i ij

There are several ways of choosing R ,;), and we propose
this particular choice without claiming it is optimal. Note
that the myopic model derived in what follows can accom-
modate to any choice of a proper (i.e., invertible) covari-
ance matrix R ).

With Egs. (24), (27), and (29), we obtain the visibility
phase pseudo data model:

V(1) = Plx,t) + Balt) + ¢"(t)[27],

¢™=e(t) ~ N(O,R 1)) (30)

C. Pseudo Complex Visibility Data Model
Gathering Eqgs. (22) and (30), we have finally approxi-
mated the data model [Egs. (19) and (20)] by

adata(t) — a(x,t) + anoise(t),

&%(t) = p(x,t) + Balt) + () 27],
with a™*(t) ~ MO,R,), &"°(t) ~ N(O,R 4,).
(31)

We form pseudo complex visibility measurements ydata(¢)
defined by

ylata(z) & gdatay) . eid™() (32)

The approach proposed in [20], which we recall and gen-
eralize in Appendix E, is based on an approximated com-
plex visibility data model:

ydata(t) — H(t)x . eiBa(t) +yn0ise(t)' (33)

This is exactly the sought model stated at the beginning

of this section in Eq. (21), with }"a(t)=eié"(t). We now de-
fine the myopic observation model as follows:

Yl alt) 2 H(t)x - e B0 (34)

As shown in Appendix E, the mean value ¥°*°(¢) and
covariance matrix Rymise;) of the additive complex noise
term y"°¢(¢) are carefully designed so that the corre-
sponding data likelihood criterion is convex quadratic
with respect to the complex y,,(x, @(¢t)) while remaining
close to the real nonconvex model. To illustrate these
properties, we consider one complex visibility and plot in
the complex plane the distribution of ydata(z) around
yn(x,a(t)) for the true noise distribution—i.e., a polar
Gaussian noise in phase and modulus—and our Cartesian
Gaussian approximation (see Fig. 1) In particular, the “el-
liptic” covariance matrix we propose (which yields elliptic
contour plots in Fig. 1) is preferable to the more classical
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Fig. 1. (Color online) Contour plots of a polar Gaussian distri-
bution and of its Cartesian Gaussian approximation.

“circular” approximation that appears in previous contri-
butions on OLBI [22]. The latter can be described by half
as many parameters as needed for the elliptic one (one ra-
dius for a circle, instead of a short axis and a long axis for
an ellipsis), but it is clearly less accurate [20] (such a
noise statistics description has also been investigated for
the complex bispectra in the OIFITS data exchange for-
mat [11]).

From Eq. (33), we build Chi-2 statistics over real and
imaginary parts of the observation equation

Xoo (@, al(t))

. {Re{ydﬂa(n — Y, alt)) —ymise(t)}} '
| Imfy®ta(e) -y, (a0, a(2)) - (1)}

<R 1 Re{ydata(t) - ym(x, a(t)) - Synoise(t)}
ynoise(z) Im{ydata(t) — y, (x, a(t)) - ()} |

And we finally propose the myopic goodness-of-fit crite-
rion:

T, @) = D) T, alt), 1) = D xXop(*, (b)), (35)

We can now design a myopic Bayesian approach to the re-
construction problem by combining the data term with a
regularization term along the lines of Subsection 2.E:

Jx, @) = 7% (x, @) + I (x). (36)

The next section describes an alternate minimization
technique applied to regularized criterion (36).
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4. WISARD

In this section, we describe WISARD, standing for Weak-
phase Interferometric Sample Alternating Reconstruction
Device, a self-calibration method for OLBII.

A. Global Structure of WiSARD
WISARD is made of four major blocks:

e A first block recasts the raw data (i.e., closure phases
and squared visibilities) in myopic data (i.e., phases and
moduli) as described in Subsections 3.A and 3.B.

e A second “convexification block” computes a Gaussian
approximation of the pseudo visibility data model as de-
scribed in Subsection 3.C.

e A third block builds a guess for the object x and ab-
errations « (i.e., a good starting point).

¢ Finally, the self-calibration block performs the mini-
mization of regularized criterion (36), under constraints
(16). It alternates optimization of the object for given ab-
errations and optimization of the aberrations for the cur-
rent object.

The structure of WISARD is sketched in Fig. 2. The prin-
ciples that underline the three first blocks of WISARD have
been described in previous sections, while details on the
self-calibration minimization are gathered in the next
one.

B. Self-Calibration Block
In the following, we describe the three key components of
the self-calibration block.

Minimization with respect to x. The criterion J%%(x, a)
we have derived is quadratic and hence convex with re-
spect to the object x. Hence the minimization versus x
does not raise special difficulties.

Minimization with respect to a. 7%%3(x | @) is the sum of
terms involving only measurements obtained at one time
instant ¢ [Eq. (35)]:

TR, @) = > T (x, alt),1).
t

Because the time between two measurements is much
greater than the turbulence coherent time (around

Raw data s du2 gdaa R Ry

Myopic pseudo—datal adta ¢dta R R,

’ Convexification ‘

Myopic approx. datai ydu R

Initialization :
guess X 04

Self—calibration
Aberration step

Reconstruction
Fig. 2. (Color online) WiSARD algorithm loop.
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10 ms), aberrations a(t) at two different instants are sta-
tistically independent. We can then solve separately for
each set of a(t), which dramatically reduces the complex-
ity of the minimization. The number of a(¢) components to
solve for is (N;—1) and the minimization is delicate, as
the criterion exhibits periodic structures that have been
studied in [22].

However, exact minimization is affordable for a three-
telescope interferometric array. In this case we have to
perform several two-parameter minimizations, and each
one can be efficiently initialized by an exhaustive search
on a 2D grid, which ensures we avoid local minima. On
the other hand, when N, gets high enough, e.g., 6, then
the number of «(t) to solve for, e.g., 5, gets small com-
pared to the number of closure phases available, e.g., 15.
With a three-telescope array, 2/3 of the phase information
is missing, whereas with a six-telescope array, only 1/3 of
the phase information is missing. In this last case, which
corresponds to the processing of synthetic data presented
in Subsection 5.A, the reconstructions were straightfor-
ward, and no effects of the local minima in @ were wit-
nessed.

In other words, coping with the ambiguities in e, for in-
stance, with the specific criterion proposed in [22], may be
necessary only for N;=4 or N;=5. For N;=3, an exhaus-
tive search is possible, and for N;=6, ambiguities in « do
not have, according to our experience, a major impact on
reconstruction.

Starting point: object and aberration guess xy and «. If
a parametric model of the observed stellar source is not
available, the object starting point is a mean square solu-
tion, from which we extract the positive part. The first
step in the self-calibration block is a minimization with
respect to a for x=x,,.

5. RESULTS

This section presents some results of processing by the
WISARD algorithm, with both synthetic and experimental
data.
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A. Processing of Synthetic Data

The first example takes synthetic interferometric data
that were used in the international Imaging Beauty Con-
test organized by P. Lawson for the International Astro-
nomical Union (IAU) [23]. These data simulate the obser-
vation of the synthetic object shown in Fig. 3 with the
Navy Prototype Optical Interferometer (NPOI) [24] six-
telescope interferometer. The corresponding frequency
coverage, shown in Fig. 3, has a structure in arcs of circles
typical of the supersynthesis technique, which consists in
repeating the measurements over several nights of obser-
vation so that the same baselines access different mea-
surement spatial frequencies because of the Earth’s rota-
tion. In total, there are 195 square visibility modules and
130 closure phases, together with the associated vari-
ances.

Six reconstructions obtained with WISARD are shown in
Fig. 4. On the upper row is a reconstruction using a qua-
dratic regularization based on a power spectral density
model in 1/|u|? for a weak, a strong, and a correct regu-
larization parameter. The latter gives a satisfactory level
of smoothing but does not restore the peak in the center of
the object. The peak is visible in the under-regularized
reconstruction on the left but at the cost of too high a
residual variance.

The reconstruction presented on the lower row is a good
trade-off between smoothing and restoration of the cen-
tral peak thanks to the use of the white LyLY prior term
introduced in Subsection 2.E. The automatically set pa-
rameters [Eq. (18)] are very satisfactory (left), and a light
tuning (center and right) allows an even better recon-
struction. The goodness of fit of the L,LY reconstruction
can be appreciated in Fig. 5. The crosses (red online) show
the reconstructed visibility moduli (i.e., of the FT of the
reconstructed object at the measurement frequencies),
and the squares (blue online) are the moduli of the mea-
sured visibilities. The difference between the two,
weighted by 10 times the standard deviation of the
moduli, is shown as the dotted curve. The mean value of
this difference is 0.1, which shows a good fit (to within
1 o).

12.1 mas x 12.1 mas

Fig. 3. (Color online) Synthetic object (right) and frequency coverage (left) from the Imaging Beauty Contest 2004.
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Fig. 4. (Color online) Reconstructions with WISARD. Upper row, under-regularized quadratic model (left), over-regularized quadratic
model (center), quadratic model with correct regularization parameter (right). Lower row, white L,L{" model with automatically set scale
and delta parameters (left), white L,L{"“ model with half-scale (center), white LyoL}“ model with half-delta (right). Each image field is

12.1X12.1 mas.

1.0 \ \ \
i Abs(Reconstructed Vis.) X
i Abs(Measured Vis.) O
i Abs(Difference) /(10 x stddev)
0.8
0.6—
0.4—
0.2
0.0 !
0 2.0x10"  4.0x107  6.0x10"  8.0x10"  1.0x10°  1.2x10°

spatial frequency (rads™)

Fig. 5. (Color online) Goodness of fit at WISARD convergence.
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B. Processing of Experimental Data

Here we present the reconstruction of the star y Cygni
from experimental data using the WISARD algorithm. The
data were obtained by S. Lacour and S. Meimon under the
leadership of G. Perrin during a measuring campaign on
the IR/Optical Telescope Array (IOTA) interferometer [25]
in May 2005. As already mentioned, each measurement
has to be calibrated by observation of an object that acts
as a point source at the instrument’s resolving power. The
calibrators chosen were HD 180450 and HD 176670.

The star y Cygni is a Mira-type star, Mira itself being
an example of such stars. Perrin et al. [26] propose a
model of Mira-type stars, composed of a photosphere, an
empty layer, and a thin molecular layer. The aim of the
mission was to obtain images of y Cygni in the H band
(1.65 um=175 nm) and, in particular, to highlight pos-
sible assymmetric features in the structure of the molecu-
lar layer.

Figure 6 shows, on the left, the u—v coverage obtained,
i.e., the set of spatial frequencies measured, multiplied by
the observation wavelength. Because the sky is habitually
represented with the west on the right, the coordinates
used are, in fact, —u,v. The domain of the accessible u
—v plane is constrained by the geometry of the interfer-
ometer and the position of the star in the sky. The “hour-
glass” shape is characteristic of the IOTA interferometer,
and entails nonuniform resolution that affects the image
reconstruction, shown on the right. The reconstructed an-
gular field has sides of 60 mas. In addition to the positiv-
ity constraint, the regularization term used is the LyLY{
term described in Subsection 2.E. The interested reader
will find an astrophysical interpretation of this result in
[27].

6. CONCLUDING COMMENTS

We have proposed a complete and precise self-calibration
approach to optical interferometry image reconstruction.
After pointing out the data model specificities in the OLBI
context, we have emphasized the sources of underdeter-
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minations, which make a classical Bayesian criterion de-
scent method critical. Namely, the main problems are the
phase underdetermination caused by turbulence effects,
and, as noted only recently, the polar coordinate structure
of the data model.

We have built a specially designed approximate myopic
data model in order to derive a self-calibration method.
Special care was given to the design of the second-order
statistics of the myopic model, an aspect that was ignored
in previous related works.

We have extended our previous work on polar data con-
version [20] and proposed a convex approximation of the
noise model that reduces the number of local minima of
the criterion to minimize.

We also addressed integer ambiguities induced by clo-
sure phase wrapping, which are classical when dealing
with phase data, and have discussed their impact on the
image reconstruction quality: for three-telescope data, we
have proposed an exhaustive search method, and we have
witnessed that these ambiguities do not raise any particu-
lar problem when processing the interferometer data of
six or more telescopes. Concerning the remaining case of
four to five telescopes, the work by Lannes [22] should be
worth investigating. On the other hand, global minimiza-
tion methods were left aside because of their intensive
computation needs. As computer performance increases,
these methods might be, in the years to come, an appro-
priate way to deal with local minima.

All these developments allowed us to propose WISARD, a
self-calibration method for OLBII reconstruction and to
demonstrate its efficiency on simulated data.

Finally, WISARD was also used to successfully process
real astronomical OLBI data sets. These results were
made possible thanks to a close partnership with the as-
tronomers Sylvestre Lacour and Guy Perrin of the Obser-
vatoire de Paris Meudon, within the PHASE partnership
(Partenariat Haute résolution Angulaire Sol-Espace). In-
deed, an accurate astronomical model of the observed
stellar object is a precious guideline for reconstructing a
complex image from OLBI data. From the author’s point

60 mas x 60 mas

Fig. 6. (Color online) Frequency coverage (left) and reconstruction of the star y Cygni (right).
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of view, such a collaboration is essential to the success of
OLBII techniques.

APPENDIX A: BASELINE AND CLOSURE
OPERATORS C AND B

Let N; be the number of telescopes of the interferometric
array. We have the following definitions:

B,2[-1 1], (A1)
R _ler IdNt—l
By2|————|, A2
N o By, 1 42
Cy, 2 [— By, Id[(Nt—l)(Nt—2)]/2], (A3)

for N;=3.
In what follows, we prove that ker C=im B.
We have Cy By, =0, so

im B C ker C. (A4)

It is straightforward to prove by recurrence that By, -1y,
=0, which yields rank By, <N;-1. Because By, contains
IdNt_l, we gather

dimim B £ rank B=N,- 1. (A5)

Here Cy, contains Id(y, 1),-2)2, which yields rank Cy,
=(Ny-1)(Ny-2)/2, or

dimker Cy, < N;-1. (A6)

With Eqs. (A4)—(A6), we gather
ker C=imB. (A7)

APPENDIX B: CHARACTERIZATION OF THE
BASELINE PHASE-INDEPENDENT
OPERATORS

Here we prove that any continuous differentiable function
f verifying property (8)

fl¢+Beo)=f(¢), VY (d,¢)

is such that f(¢)=g(C¢), where C has more columns than
rows, so its pseudo inverse is defined by C*2CT[CCT]!
and verifies

cC'=1d (B1)
and thus
CC'C-C=0=C(CTCPh-¢)=0,
A7 .
V¢=3¢,(C'CoH- ¢)=Be,
Vo= To,p=C'Ch-Bep, YV ¢.

With this we obtain that any f verifying property (8) is
such that

f(¢)=f(IC’'CH-By) =f(C'CPH)=g(Ch).
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APPENDIX C: WRAPPED KERNEL OF
OPERATOR C

The kernel of operator C is given by ker C=im B [Eq.
(AT7)]. With dimensional arguments, it is easy to see that

imB=imB,

where B is obtained by removing the first column of op-
erator B, so we have

ker C =im B. (C1)
Let us now characterize the set of ¢*°" such that
C o~ =0[27].

Because C has integer components, ¢**' can be consid-
ered modulo 27. With Eq. (C1), we obtain

Ja;, ¢*"=C(0[27]) + Bay[27]. (C2)

Because B has integer components, a; can be considered
modulo 27. The issue here is to evaluate the CT(0[27])
term, i.e., the value of CT(27k), with k any integer vector.

Equations (A1) show that C=[M|Id]. The integer vec-
tor

is then such that

0
Cﬂz[*|1d] =K.
K
Then we have
Cu=k=Cpu' =CC'k=C(C'k-p)=0= 3 ay,
C'k-p=Bay= J a,,

27C k=2 + B27ay) = 3 ay,

C'(0[27]) + Ba; = B27may + ay)[27].
e

a

So Eq. (C2) yields

Ja, ' = Ba[27]. (C3)

APPENDIX D: SQUARE ROOT OF A
GAUSSIAN DISTRIBUTION

Let us assume we measure the squared value s of a posi-
tive value a, with an additive Gaussian noise:

sdata — a2 + Snoise’ (Dl)
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Fig. 7. (Color online) Behavior of (4) in function of a? with a
unit oy.

with s"is¢ being zero-mean Gaussian with the variance
o2, Let d be the estimator of a from s32 defined by

Js®ta if sdata> o
a= ,
0 else
where a can be seen as pseudo data. The data model of @
derived from Eq. (D1) is not additive Gaussian. As will be
shown in Appendix E, an optimal Gaussian approxima-
tion of the data model of @ would be

d=a+am", (D2)

with @™ a Gaussian noise with a mean equal to () and
a standard deviation \Var(a).

We have studied the behavior of the mean (a@) and stan-
dard deviation \Var(a) of this estimator for various val-
ues of a2, with a unit o, (see Figs. 7 and 8). We can dis-
tinguish two regimes for (a):

¢ Alow-mean regime, where a®>< ,/6: a nonnegligible
part of the distribution of s92% around a? is in the nega-
tive domain. Because ¢ estimates a null value for a when
sdata jg negative, its mean will depend mainly on the
width of the Gaussian wings. A good approximation of (@)
is v’%-

e A high-mean regime, where a?=¢,/6: most of the
distribution of s42% around a2 is in the positive domain.
The fact that @ estimates a null value for ¢ when sdat2
<0 does not affect its mean (@), which is close to a. Be-
cause a is not known, we choose (&)= s, We can dis-
tinguish the same two regimes for \Var(a). However, the
transition is around oy:

® When a?<g,, the fact that 4 estimates a null value
for @ when sdata i

is negative tends to diminish its standard
deviation, which we approximate by \Var(a)= \““‘;s/ 2.

¢ In the high-mean regime, where a?>= o, most of the
distribution of s92% around a? is in the positive domain,
and Var(@) is close to the classical expression. This ex-
pression corresponds to a first-order expansion in o,:

(a+0)t=a’+0,= 2a0, =0,

where o,/2a. Because a is not known, we choose
\Var(@)=0,/2\s%%, We then propose the pseudo data
model

adata noise ,

=a+a

with
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Fig. 8. (Color online) Behavior of \fVar(d) in function of a2 with
a unit oy.

dat \’,sdata if Sdata >0
a ata =
0 else

and a™*® a Gaussian noise with mean and standard de-
viation defined by

Jo /6 if s < g,/6,

a= .
Js®te if sdte= g /6
O, = O

if sdata = o -

2 \“” saata

We also decide to discard the data such that sdaa<_q.

APPENDIX E: CARTESIAN GAUSSIAN
APPROXIMATION TO A POLAR GAUSSIAN
DISTRIBUTION

If we define
Yt (@,0) 2 H(t)x - eBa®), (E1)
Eq. (81) reads
a3 (1) = |y | (3,2) + @™°@),  @™°(¢) ~ MO,Rq),
() arg Yao@,0) + G1(D), DD ~ NOR ).
(E2)

1. General Expression
We consider a polar distribution of a Gaussian vector y of
modulus @ and phase ¢:

¢data - (_b"' ¢n0ise’ (ES)

adata —a+ anoise’ (E4)

where ¢"°5¢ and a™*¢ are zero-mean real Gaussian vec-
tors of covariance matrices R, and R (the vectors Proise
and a"*¢ are assumed uncorrelated).

With the definitions
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y
noise & data _ ~
y £ _

y Yy,

y?ad Re{ynoisee—id}}’

S - E5
y?an £ Im{ynoisee—id)}, ( )

n
=noise & |:yrad:|
y - n ’

\ Ytan

yl?ad — [a + anoise]cos ¢noise -a,

[I>

we gather

y:;lan — [(_l + anoise]sin ¢noise' (EG)
A complex vector is Gaussian if and only if each of its com-
ponents is Gaussian. A complex is Gaussian if and only if,
in any Cartesian basis, its two components are Gaussian.
So y is Gaussian if and only if y°°*¢ is Gaussian, which is
not the case [20]. In what follows, we show how to opti-
mally approximate the distribution of y"°i*¢ by a Gaussian
distribution.

2. Gaussian Approximation

We characterize our Cartesian additive Gaussian approxi-
mation, i.e., its mean (y"°¢) and covariance Rgnoise, by
minimizing the Kullback—Leibler distance between the
two noise distributions, which gives [20]

@noise) -E [yrad:| _ |:yrad:|
Yian Yian ET)
|:5’:lad - y?ad] [&?ad - y:‘lad:| '

R:noise = E —n n —n n
Ytan ~ Ytan Ytan ~ Ytan

y

and we define

JAN
R ynoise =

[Rrad,rad Rrad,tan:|
y

T .
R Rtan,tan

rad,tan

For a zero-mean Gaussian vector ¢"**¢ of covariance ma-
trix R 4,

E{sin ™%} =0,

. Ry,
E{cos ¢]"*°} = exp| - - )

E{sin ¢ sin qﬁj’-wise} =sinh R @,

2
R¢ii+R¢jj
expl —-——— |,
P 2

E{cos ¢ cos qﬁjr-“’ise} =coshR ;s

( R¢ii+R¢jj)
exp-—5— ).

E{cos ¢?°ise sin ;-“’ise} =0. (E8)

By combining Eq. (E7), (E5), (E6), and (E8), we obtain
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E{y;ladi} = C_li[e_R¢ii/2 — 1],
Biyl}=0,

[Riadraaly =[@:aj(cosh Ry —1) + R, cosh Ry ]

e [(Ry Ry 2]

[Rrad,tan]ij =0,

[Rian tanlij = (@;a; + Raij)Sinh R,/,ij e (B +Ry,)/2) (E9)

3. Scalar Case '
Now we make the additional assumption that both ¢"*¢
and a™*° are decorrelated, i.e.,

R, = Diag{o-z’i},

R, =Diag{d’, }.

We obtain
Rrad,rad = Diag{oﬁ;d,i};
Rtan,tan = Diag{o’tzan,i} ’
Rrad,tan =0 5
with
_9 2
a; iy Oqi Py
Ufad,i = E(l —e i)+ ?(1 +e72%,),
a? ) 2. ,
i a,i
Olani = (1= €70 + —=(1-e). (E10)

In this case, we can plot for one complex visibility the
true noise distribution—i.e., a Gaussian noise in phase
and modulus—and our Gaussian approximation (see
Fig. 1).
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