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Aperture synthesis allows one to measure visibilities ay Yegh resolutions by
coupling telescopes of reasonable diameters. We considevisibility amplitudes
and phase are measured separately. It leads to an estinpgbbiem where
the noise model yields a non-convex data likelihood coteriWe show how to
optimally approximate the noise model while keeping théedon convex. This
approximation has been validated both on simulations anexperimental data.
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1. Introduction

Aperture synthesis allows one to reach very high angulaluésn by coupling telescopes
of reasonable diameters in an interferometric array. Bezaurrent interferometers do not
provide directly images, the data have to be processed dhran appropriate imaging
software.

The basic observables of an interferometer are the comdébilities extracted from
each fringe pattern formed by the instrument. In the absehcwise, complex visibili-
ties amplitudes and phases are corrupted by atmosphehidgragth fluctuations, and by
imperfect knowledge of the source position and of the ieteriheter geometry.

At radio wavelengths, itis usually possible to consideséherrors as part of the noise,
and to use directly complex visibility amplitudes and plsagen the contrary, at optical
wavelengths, path length fluctuations due to atmosphatcitence make visibility phases

unexploitable. Thus, the observables of current interf&ters at optical/infrared wave-



lengths are quantities independent of turbulent phaseh,asisquared visibilities and clo-
sure phases.

There are various ways of circumventing turbulence effe&trst one is obviously
to locate the instrument where there is no turbulence,n.space. In this case, complex
visibilities are measurable. Secondly, if the u-v plane, ihe frequency coverage, is re-
dundant enough, visibility phases can be successfullynastid from closure phases. This
is the method used by Delage. al. [1] to form complex visibilities from experimental
squared visibilities and closure phases. However, recwydgechniques reduce the fre-
guency coverage. Another promising way of obtaining compisibilities with an optical
interferometer in presence of turbulence is to use phaseerte, as in the Very Large
Telescope Interferometer (VLTI) instrument PRIMA (Pha&seferenced Imaging and Mi-
croarcsecond Astrometry?]. This method will allow astronomers to measure complex
visibilities without constraining the u-v coverage.

Lastly, self-calibration algorithms3] first developed for radio-interferometry, allow
one to estimate both turbulent phases and the object, byhalieg turbulent phases es-
timation steps with a known object and object reconstracsi@ps with known turbulent
phases. The latters are strictly identical to Fourier sgsithproblems without turbulence,
i.e. to object reconstruction problems from noisy complisioiities.

In this paper, we address object reconstruction from coxnpsbilities for both opti-
cal and radio wavelengths. The noise withessed on compdéihties yields a non-convex
data likelihood criterion (Sec8.D), which makes reconstruction difficult.

After stating the interferometric data model we considexc{S3), we compute an
optimal approximation of it which yields a quadratic dakelihood criterion (Sect). This
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approximation is then validated on simulations and useddogss experimental data] [

(Sect.5).

2. Fourier synthesis

The basic observable of an interferometer is complex Vigipbwhich can be measured
from the fringe pattern obtained by combining the beams af tarrectly phased tele-
scopes. According to the Van Cittert-Zernike theoreih ¢omplex visibilities are related

to the sky brightness distributiar{a, b) through a Fourier Transform (FT):

Vv <V = [ZD = // x(a,b) exp (—2mi(ua + vb)) dadd (1)

a andb being angular positions in the sky andthe 2D spatial frequency. For a couple

— =

of telescope$T;, T»), the spatial frequency is given by’ = 2571, wherery (resp.rs)
denotes the position vector 6f (resp.13) projected onto a plane normal to the observation
axis.7> — 71 is the corresponding baseline.

An interferometer is a device allowing to measure the Fodmansform of an object
at a setv of spatial frequencies. The aim of interferometry imagisda retrieve the ob-
served object from the set of measured Fourier samples. W& adBayesian approach to

solve this inverse problem, in which the first step is to desiglata formation model, both

accurately fitting the actual physical process and yieldimgctable estimation problem.



3. Reconstruction model

3.A. Matrix formulation

Let us suppose that the sky brightness, b) is discretized over a cardinal sine basis.
It is thus represented by a vector of real coefficieAts= [X;,...,X;,..., Xy,], and

equation {) reads:
NP
V(U) :Zh(jv U)Xj7 (2)
j
the h(m, v) being complex coefficients.
We derive the following matrix formulation
V(X)=HX, ©)

with vectorV and matrixH defined by

ViIV(Vz')

hi,j = h(]? V’i>7
wherev; denotes thé'i measurement spatial frequency.

3.B. Noise statistics

We consider that measured visibility moduli and phasesWolbaussian distributions. Al-
though our method generalizes to any Gaussian distribatighe visibility moduli and
phases, we will assume in this paper that the cross cooptatire either not available or

negligible. Then the measured visibiliti®s™<** are linked to the “true” one¥; by the



following model :

(4)
arg V" = arg Vi(X) + barg,i
with all the noises centered, decorrelated and Gaussidn,.é¢he standard deviation of
b ;» ando,, ; the standard deviation of,, ;. Model4 applies to the output of an unstable
radio-interferometerd]. In optical interferometry, it corresponds to the noisén@ssed in

various experimental settings where turbulence effe@sdher inexistent or sufficiently

corrected (see sectid).

3.C. Bayesian estimation

Due to the poor spectral coverage, the object reconstrudian ill-posed inverse problem
and must be regularized (see Refd, [6] and [/] for reviews on regularization), in the
sense that someepriori information must be introduced in their resolution for tleéusion
to be unique and robust to noise. In Bayesian estimationd#te likelihoodp( datd X )
is associated with a prior distributigf X'). The “Maximum a posteriorl estimation is

obtained by maximizing the joint probability

p(X|datg o p(datg X) p(X),

or by minimizing the opposite of its logarithm:

—logp(X|datg = —logp(dataX) — log p(X) + constant term

Hence, it reduces to the minimization of a compound criterio

J = Jdata‘|“ AJp7"i07’7 (5)



where\ accounts for the confidence in the prior, and is called thelagigation parameter.
With a Gaussian prior oX, i.e. if we consider that the distribution of the objeXt is
Gaussian/,,..- is quadratic.
Here, we focus on the data-likelihood term, which is dingegtielded by the noise
model:
Jaata (X)) oc —log(p(V"™**| X)).

Taking into account data model)( the data likelihood term reduces f¢:

Ny—1

X)) =Y (I‘Gme‘“\a— “Vi<X>|)
' (6)

Np—1 2
J/meas _ ‘/z X
I Z (afg i arg Vi( ))
i=0

Oarg,i

with N, the number of baselines for which the Fourier Transform efabject is measured.

3.D. A non-convex criterion

The strict convexity of the criterion is a sufficient conditiof uniqueness of its minimum,
and ensures the good behavior of classical minimizatiooratgns [B]. We show now
that the functional/; of equation ) is not convex. Becaus¥ is linked to X by a linear
operator (see equatid@), the convexity of/; defined byJ; (V (X)) = J;(X) is equivalent

to the convexity of/;. BecauseJ; is a sum ofN, independent terms, we can deal with the
caseN, = 1 without loss of generality. TheW,,.., reduces to a complex numbey, and

V to a complex number. .J; reads:

7 (2] = |20])? | (argz —argz)?
Jl(Z) = 0_2 + 0_2
[ arg



The choice of:;, = z exp(25) andz, = zgexp(=2) yields Jy (z1) = 25, J)(z) =

arg

J1(z1) andz; + z3 = —zp. Hence, we get

j, (21‘522) (\ZO\/2)2+ m?

% (Ji () + i () =0+

SoJ; (#£2) > 4 (j1 (z1) + 1 (ZQ)) , which contradicts the convexity of (actually, this

example shows the non convexity of both the phase term anudielus term off; ).

4. An equivalent additive Gaussian noise

In this section, we design an additive Gaussian approxanaif the noise distribution,
optimally “close” to the true one (in terms of a distance tadkéned in the sequel), which
yields a quadratic data likelihood criterion. We first réthé “true” distribution, then we
state the general shape of any complex Gaussian distnibuigpressed in a convenient

basis, and we conclude by selecting the parameters of timaamine.

4. A. Statement of the true distribution

Once again, we only have to study the complex unidimensjnddlem, which is general-

ized without any difficulty. We consider the following model

2] =20l +7
(7)
argz =argzo + ¢

Hence,z = (|zo| + ) exp [i(arg 2o + ¢)] with » and following Gaussian centered dis-

tributions of variances Vér) = o7 and Valy) = o7. Itis the model of 4).



The probability distribution ot is
p(z = (l20] +7) exp[i(arg z0 + ¢)]) = f(r, ¢)

2 2
f(r,¢) o< exp l—% <% + %)}

®p

(8)

We want to approximate this distribution by an additive @®.we have to recast modé) (

in an additive one:

z=z + B 9

and we choose to writ8 as

B = (x +iy)exp (i arg z) . (10)

Identification of 8) and @,10) yields

x =(|20| + 7) cos @ — | 20|
(11)

y =(|z0| +7)singp
It is simple to see that andy are the coordinates @ in the Cartesian basist,, u, ),

corresponding to the canonigat, &) one, rotated by anglerg z, (see Figurel).

4.B. Statement of a complex Gaussian distribution

A complex noise is Gaussian if its vector representationart€sian coordinates is Gaus-
sian. We choose the aforementioned Cartesian basist, ). The change of basis is achieved

by a rotation matrixR (arg zo), with

cosyY  sina
R(¥) = - (12)

—sinYy  cosy



Any additive Gaussian noise distribution can be wriften= zy+(z+iy) exp [i arg z]) =

fo(x,y), with:

xr—X xr—X
! ! 3! (13)

T,Y) = —————€Xx
fg( y) o dot > p 5 ;

with 3 a symmetric positive definite matrix.

We now compare it to the true distribution @f, y) stated in Equations3f and (L1).

4.C. Kullback-Leibler divergence minimization

In order to choose the additive Gaussian distribution cbse the true one, we have
to define a distance between two distributions. A converagiat well known one is the

Kullback-Leibler divergence, defined by:

d(f1, fa) = /f1 log (%) :

Note that technically, this divergence is not a distanceabse it is not symmetric. It
is however often used as a discrepancy measurg ofr.t. f, because it is positive and
equal to 0 only forf; = f5. §(f1, f2) is the expectation of the “log-distance” between two
distributionslog (%) , W.r.t. the probability distributiorf;. To fit a Gaussian distributiof),
on the true distributiorf, it is therefore natural to minimiz& f, f,) rather tharv(f,, f).

As proved in the Appendix, the minimization &ff, f,) yields the following optimal

10



parameters :

, p
= E {2} = |0l [exp <_§) - 1}
y=Er{y} =0
5. = Diag{c?, 02} (14)
ot =€ {(o =27} = LTI e (<202)] ol exp (—2)
73 =€ (- = BT g (<202,

The radial biasz can be estimated fromando, asz ~ || [exp (—%) — 1}. We

shall notem the complex bias of coordinatés, y).

4.D. Two Gaussian approximations

Circular approximation This simple isotropic Gaussian approximation, inheriteaif
Radio Imaging, is obtained by setting ando, in Equation (4) to the same value. Such
an approximation is valid in Radio Imaging with stable iféeometers, and has been also
used in optical interferometr]. However, it is not adapted to noise distributions in which
the modulus standard deviation is different from the phasedard deviation, which is
often the case in optical interferometry. We show here howdsign an approximation

specifically dedicated to process optical interferome#tad

Optimal approximation Instead of a circular approximation, we propose a seconerord

expansion of the optimal Gaussian approximation statedjuraion (4), i.e. we consider

11



thato,, /27 ando, /|| are small w.r.t. 1:

=0
y=Er{y} =0
(15)
o2 = o2
o5 = |z|*0?

Why choose the optimal approximation? The contours of the distribution afaround
zo are plotted in figure® and3 for the true noise statistics, for the optimal Gaussian ap-
proximation (more precisely, its second order expansiod)far the circular one. In Fig,
the radial noise level, i.e in the directiar,, given by%, is greater than the one in the
directionu, given byo,,, whereas it is the opposite in Fig.

For both configurations, these contour maps illustratedheapproximation fits better

the true distribution.

4.E. N dimension case

With our Gaussian approximation, the data-likelihood foe oneasuremeng<** is
J,(X) = —2log f, (V" — Vo(X).
With (12) and (L3), we get:
Jo(X) = Vg = Vo(X) —moll3, (16)
with
Yo = R(—arg Vy"™*) ¥ R(arg V;") (17)
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and
t

) B R(. » .
” . HZ()le - EO,R (18)
3() 3()

This expression can be easily generalized¥omeasurements:

N-—1

Jo(X) =D Ve = Vi(X) —mill3, (19)
=0

= [V - V(X) - mlf5 (20)

¥ being bloc diagonal, with its blocks equal to thex.

5. Validation on simulations and on experimental data

In this section, we compare “circular” approximation ana optimal Gaussian approxi-
mated distribution, denoted as “ elliptic”, in terms of rastruction performances. To do
so, we use either “circular” or “ elliptic” noise model to baithe data likelihood term,
which we associate with the same prior term (see seétiar) in a Bayesian reconstruc-
tion process.

Although our model clearly fits better the noise distribatibs performances are highly de-
pendent on the noise outcome affecting the data. Hence, lvgemerate a hundred noise
outcomes, in order to assess the average gain induced bpmaxamation.

We will then show that our method performs satisfactorilyreal data.

5.A. Simulations
5.A.1. Simulated data
The data we process simulate VLTI measurements when ohgeawi object correspond-

ing to the model of the Ru Lupus Micro-jet developed by Paulrdia et al. 1.0]. The
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frequency coverage (Figb) has to be chosen rich enough to highlight the differenees b
tween reconstructions. Indeed, our method focuses on tadiklelihood, which affects all
the more the reconstruction quality as there are many da ffEquency coverage cor-
responds to six nights of observation of the same source 3vithescopes of the VLTI,
with 20 measurements each night. As already mentioned, weider that the effects of
turbulence are corrected enough to be included in the ndlse.complex visibilities are
corrupted by noise according to modé),(with o) ; = [V;"***| x 4.65% ando g ; = 0.27

radians for alk.

5.A.2. Regularization and constraints

We choose a Gaussian and shift-invariant prior distributay X [11], so the distribution
of its Fourier TransformX is a Gaussian distribution with a diagonal covariance matri
and the diagonal components are the values of the objectrPRpestrum Density (PSD)

PSD(v). Thus, the prior term reads :

The mean objecKX ,, is assumed to be constant, with its flux equal to the measuned fl
i.e. the null frequency measured visibility.

The PSD model chosen is the function

K
()
PO

The parameters’, p andp, are estimated by a maximum likelihood on the data.

PSD(v) =

As noted in [L1], K plays the role of the regularization paramekgiSee Eqg5), and can

14



be directly estimated from the data. Thus, the method is ¢tetely unsupervised, i.€0
parameter hasto be set by the user.

Reconstruction uses a BFGS-method (Broyden-Fletchedf@dl-Shanno) software
OP-VMLM, designed by Eric ThiébautP], and is performed under positivity constraint.
To compare the circular approximation with our method, wapote for each noise out-
come an Improvement of the Root Mean Square Error (IRMSEgails (dB). A posi-
tive IRMSE means a better reconstruction with our methoguié @) shows the IRMSE
repartition histogram for the 100 noise outcomes.

The improvement is 4 dB in average, and 95% of the reconginghave an IRMSE
of more than 2dB. We can conclude that our elliptic approtiomaperforms much better
than the circular one, in terms of reconstructed image tyual

As mentioned before, reconstructions are performed with 1. To measure the in-
fluence of\ on the IRMSE, we have processed the same datawith0.1 and\ = 10.
Table () provides IRMSE means and standard deviations over theed@hstructions for
different \.

For a variation of a decade around the nomikahlue, we still witness a clear recon-

struction improvement with our method.

5.A.3. Reconstructions

To further illustrate the interest of using our method, wevslmn Fig 5 typical reconstruc-
tions for both methods: we have selected among 100 noisemets the one yielding an
IRMSE close to the mean value. Our method obviously helpsaied the noise , yielding

an Improvement of the Root Mean Square Error (IRMSE) wortB4ndaverage.
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In next section, we process real experimental data in ocdéemonstrate the efficiency of

our method with realistic noise distribution and frequenoyerage.

5.B. \Validation on experimental data
5.B.1. Experimental setup

Experimental data were graciously supplied by Laurent @=knd Francois Reynaud and
correspond to the experiment described in Rgf. The object is made of four stars of var-
ious magnitudes, and is observed through a fiber link intenfeter featuring 61 frequency
measurements. The data model used corresponds to syjtdmgause only the standard

deviation of measurements are provided.

5.B.2. Regularization

Reconstructions are done under positivity constraint. 18 ase the quadratic regulariza-
tion term described in sectidnA.2

5.B.3. Reconstruction

Fig. (6) shows the contour maps of the true object and the restoredTdre 4 structur-
ing elements are correctly reconstructed, although qtiadegularization slightly over-
smoothed them. Tabl@) shows that our reconstruction is correct in terms of re¢gpiosi-
tions of the peaks. We here validate that our method is effieéied usable on experimental

data.
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6. Concluding comments

We have designed an accurate data-likelihood criterionghvblosely mimics the noise
model while keeping the criterion convex. Our method penied satisfactorily both on
simulated data and on experimental material. However, reopisticated regularization
should be investigated. Additionally, this paper did nodiregds how to deal with closure
phases instead of visibility phases. This can be done byuSielf-Calibration” methods,
which alternate transfer function estimation steps witfedcbreconstruction steps}, 9].
We are currently developing an original self-calibrationqedure which uses the likeli-

hood approximation technigues developed in this paper.

A. Kullback-Leibler Distance Optimization

We show here that for any given distributig.X ), the Gaussian distribution defined by:

1 1
X)= —— ——P(X
9X) = S exp |3 PX)
with 3 a symmetric positive definite matrix and
PX)=(X-X)'2 (X - X)

which reaches the minimum of the Kullback-Leibler Distan¢g ¢) is such that:

X =E/{X}
Y =E {(X - E {X})(X - E {X})'} (21)
= Var(X)

This property may result from general results of probaptliteory, but we provide here a
compact and self-contained proof.
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A.A. Definition of the Kullback-Leibler Distance
The distancé( f, g) is defined by

5(f.9) = / £(X)log %dw

= —E;{logg} + est

So
1
f,9) = 5 (Ef{P(X)} +logdet X) + cst
A.B. First order terms
d5(f,q9) OE{P(X)}
ox V7 ax Y
OP(X)
E — fr—
= f { X } 0

S E 28 (X - X)) =0

A.C. Second order terms

9(f.9) _,
o
= a5 [Ef{P} +logdetX] =0
0P 0logdet %
= {a_z} T !

= E {27 (X - X) (X - X)' s} 457 =0

18



Becauses is symmetric, we haveZ ! = X1, so

d(f.g9)
oy 0

=SB {(X - X) (X - X)'} o =5

= E{(X-X)(Xx-X)'} =3y

=T -E{(X-X) (X - X)'}

= ¥ = Var(X)
which concludes the proof.

A.D. 2-dimensional case

1 1
exp—=P

T,Y) = —
9(z,y) V2rdet X 2

t

is such that:

(22)

t
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Table Captions:

e Tablel :Influence of regularization parameter on IRMSE

e Table2 :Relative positions and flux of the 3 faintest star w.r.t. bhightest one
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Table 1. Influence of regularization parameter on IRMSE

A mean(IRMSE) Std. Dev. (IRMSE)

0.1 2.6 1.8
1 4.1 1.4
10 7.8 0.9
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Table 2. Relative positions and flux of the 3 faintest startvilre brightest one

Position error

(w.r.t. main star diameteb)

Intensity

(—2.51log;, flux)

star# Ax/D Ay/D true reconstructed
1 0 0 1.33 1.07 £ 19%
2 0.13 0.05 1.89 1.72 + 9%
3 0.03 0.06 2.20 1.95 + 11%
4 0.01 0.08 2.44 241+ 2%
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Figure Captions:

Fig.1 :Polar and Cartesian coordinate systemg&.in
Fig.2 : Noise distribution contour lines, faf < o,,
Fig.3 :Noise distribution contour lines, o > o,,
Fig.4 :IRMSE repartition histogram

Fig.5 : Simulation results : (a) True object, (b) u-v coverage : 8@guencies, (c)
reconstruction with elliptic approximation and (d) rectvastion with circular ap-

proximation.256 x 256 pixels. Pixel size : 0.2 marcsec.

Fig.6:True object (left) and restored one (right). Contour levéb%, 20%, . . ., 100%

of the maximum.

Fig.7 :True object (left) and restored one (right). D is the disaneff the main star,

used in tablg.

Fig.8 :Experimental frequency coverage.
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Fig. 1. Polar and Cartesian coordinate systents.in

26



Elliptic 23
Gaussian «-—-—-» o
Approximation -7 S
pproximatiol ) RN
7 7 - _ h ~N AN
\ - ~_ N . N

,/ -~ \ \

! LS Sov Y

/ " oy R

. . ; |

Noise statistic ~-/ ! I

v I

v YO /o

AN < - ,
Circular NS T

Gaussian=-—-—-----1 NN
Approximation ~.____-
Z0
y -
o R

Fig. 2. Noise distribution contour lines, fe¥; < o,

27



Elliptic
Gaussian <-—-—-—-—- 1
Approximation

Noise statistic «-—-—----

Circular
Gaussian=-—-—-----1
Approximation

Fig. 3. Noise distribution contour lines, fe¥; > o,

28



% realizations

20

IRMSE distribution for 100 noise outcomes

\
IRMSE(dB)

\
-

40 ‘Og RMSECWCU\W -

40 ‘Og RMSEE\HpﬁC

Mean IRMSE =4.1
IRMSE Std Dev. =1.4
I
\
S ——— (S —
|
\
|
1 | | | 1 n_L 1 |
6 8 10
IRMSE (dB)

Fig. 4. IRMSE repartition histogram
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Fig. 5. Simulation results : (a) True object , (b) u-v coveradg360 frequencies,
(c) reconstruction with elliptic approximation and (d) oestruction with circular

approximation256 x 256 pixels. Pixel size : 0.2 marcsec.
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Fig. 6. True object (left) and restored one (right). Contolavels

10%, 20%, . .., 100% of the maximum.
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Fig. 7. True object (left) and restored one (right). D is trenteter of the main star,

used in tablg.

32



S — 77— — 5
0.6 + + + E
g B + N ]
E + + 4 + + E
o5k + + N + + E
e + + + + E
E + + + + + 1
S + + + + + ]
E + + + + 7
0.4 + + + + + + + —
E + + + + + ]
E + + T Ty + E
E + + + + + + E
E + + + 7
03 + * + + + + + + —
= + + S + + E
= ty + + N + + L ]
£ + + ot +F + + B
£ + + + o4+t o4+ + + ]
02E Ty T+ T + * T 3
= + o, + + Lt + A
e+ + + T + + L+
E T+ + + + + o+ + + B
£ + + +F o+ + 1
01 E T +ot o+ bt + E
TE T+, T4 gt o+ ++ ]
C T + + + + ++ 9
= + 4 +++++++++ ++ B
E Ty, AF ++ 4 ]
E +yF o4+ E
£ L E
ook v o R e e 1T
—-0.6 —-0.4 -0.2 0.0 0.2 0.4 0.6

Fig. 8. Experimental frequency coverage.
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