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Aperture synthesis allows one to measure visibilities at very high resolutions by

coupling telescopes of reasonable diameters. We consider that visibility amplitudes

and phase are measured separately. It leads to an estimationproblem where

the noise model yields a non-convex data likelihood criterion. We show how to

optimally approximate the noise model while keeping the criterion convex. This

approximation has been validated both on simulations and onexperimental data.

c© 2005 Optical Society of America
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1. Introduction

Aperture synthesis allows one to reach very high angular resolution by coupling telescopes

of reasonable diameters in an interferometric array. Because current interferometers do not

provide directly images, the data have to be processed through an appropriate imaging

software.

The basic observables of an interferometer are the complex visibilities extracted from

each fringe pattern formed by the instrument. In the absenceof noise, complex visibili-

ties amplitudes and phases are corrupted by atmospheric path length fluctuations, and by

imperfect knowledge of the source position and of the interferometer geometry.

At radio wavelengths, it is usually possible to consider these errors as part of the noise,

and to use directly complex visibility amplitudes and phases. On the contrary, at optical

wavelengths, path length fluctuations due to atmospheric turbulence make visibility phases

unexploitable. Thus, the observables of current interferometers at optical/infrared wave-
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lengths are quantities independent of turbulent phases, such as squared visibilities and clo-

sure phases.

There are various ways of circumventing turbulence effects. A first one is obviously

to locate the instrument where there is no turbulence, i.e. in space. In this case, complex

visibilities are measurable. Secondly, if the u-v plane, i.e. the frequency coverage, is re-

dundant enough, visibility phases can be successfully estimated from closure phases. This

is the method used by Delageet. al. [1] to form complex visibilities from experimental

squared visibilities and closure phases. However, redundancy techniques reduce the fre-

quency coverage. Another promising way of obtaining complex visibilities with an optical

interferometer in presence of turbulence is to use phase reference, as in the Very Large

Telescope Interferometer (VLTI) instrument PRIMA (Phase-Referenced Imaging and Mi-

croarcsecond Astrometry) [2]. This method will allow astronomers to measure complex

visibilities without constraining the u-v coverage.

Lastly, self-calibration algorithms [3] first developed for radio-interferometry, allow

one to estimate both turbulent phases and the object, by alternating turbulent phases es-

timation steps with a known object and object reconstruction steps with known turbulent

phases. The latters are strictly identical to Fourier synthesis problems without turbulence,

i.e. to object reconstruction problems from noisy complex visibilities.

In this paper, we address object reconstruction from complex visibilities for both opti-

cal and radio wavelengths. The noise witnessed on complex visibilities yields a non-convex

data likelihood criterion (Sect.3.D), which makes reconstruction difficult.

After stating the interferometric data model we consider (Sect. 3), we compute an

optimal approximation of it which yields a quadratic data likelihood criterion (Sect.4). This
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approximation is then validated on simulations and used to process experimental data [1]

(Sect.5).

2. Fourier synthesis

The basic observable of an interferometer is complex visibility, which can be measured

from the fringe pattern obtained by combining the beams of two correctly phased tele-

scopes. According to the Van Cittert-Zernike theorem [4], complex visibilities are related

to the sky brightness distributionx(a, b) through a Fourier Transform (FT):

V
(

ν =
[u

v

])

=

∫∫

x(a, b) exp (−2πi(ua+ vb)) dadb (1)

a andb being angular positions in the sky andν the 2D spatial frequency. For a couple

of telescopes(T1, T2), the spatial frequencyν is given by−→ν =
−→r2−

−→r1

λ
, where−→r1 (resp.−→r2 )

denotes the position vector ofT1 (resp.T2) projected onto a plane normal to the observation

axis.−→r2 −−→r1 is the corresponding baseline.

An interferometer is a device allowing to measure the Fourier Transform of an object

at a setν of spatial frequencies. The aim of interferometry imaging is to retrieve the ob-

served object from the set of measured Fourier samples. We adopt a Bayesian approach to

solve this inverse problem, in which the first step is to design a data formation model, both

accurately fitting the actual physical process and yieldinga tractable estimation problem.
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3. Reconstruction model

3.A. Matrix formulation

Let us suppose that the sky brightnessx(a, b) is discretized over a cardinal sine basis.

It is thus represented by a vector of real coefficientsX = [X1, . . . , Xj, . . . , XNp
], and

equation (1) reads:

V (ν) =

Np
∑

j

h(j,ν)Xj, (2)

theh(m,ν) being complex coefficients.

We derive the following matrix formulation

V (X) = HX, (3)

with vectorV and matrixH defined by

Vi = V (νi)

hi,j = h(j,νi),

whereνi denotes the ith measurement spatial frequency.

3.B. Noise statistics

We consider that measured visibility moduli and phases follow Gaussian distributions. Al-

though our method generalizes to any Gaussian distributionof the visibility moduli and

phases, we will assume in this paper that the cross correlations are either not available or

negligible. Then the measured visibilitiesV meas
i are linked to the “true” onesVi by the
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following model :














|V meas
i | =|Vi(X)| + b||,i

arg V meas
i = arg Vi(X) + barg,i

(4)

with all the noises centered, decorrelated and Gaussian. Let σ||,i the standard deviation of

b||,i, andσarg,i the standard deviation ofbarg,i. Model4 applies to the output of an unstable

radio-interferometer [3]. In optical interferometry, it corresponds to the noise witnessed in

various experimental settings where turbulence effects are either inexistent or sufficiently

corrected (see section1).

3.C. Bayesian estimation

Due to the poor spectral coverage, the object reconstruction is an ill-posed inverse problem

and must be regularized (see Refs. [5], [6] and [7] for reviews on regularization), in the

sense that somea priori information must be introduced in their resolution for the solution

to be unique and robust to noise. In Bayesian estimation, thedata likelihoodp( data|X)

is associated with a prior distributionp(X). The “Maximum a posteriori” estimation is

obtained by maximizing the joint probability

p(X| data) ∝ p( data|X) p(X),

or by minimizing the opposite of its logarithm:

− log p(X| data) = − log p( data|X) − log p(X) + constant term.

Hence, it reduces to the minimization of a compound criterion:

J = Jdata+ λJprior, (5)
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whereλ accounts for the confidence in the prior, and is called the regularization parameter.

With a Gaussian prior onX , i.e. if we consider that the distribution of the objectX is

Gaussian,Jprior is quadratic.

Here, we focus on the data-likelihood term, which is directly yielded by the noise

model:

Jdata(X) ∝ − log(p(V meas|X)).

Taking into account data model (4), the data likelihood term reduces toJ1:

J1(X) =

Nb−1
∑

i=0

( |V meas
i | − |Vi(X)|

σ||,i

)2

+

Nb−1
∑

i=0

(

arg V meas
i − arg Vi(X)

σarg,i

)2
(6)

withNb the number of baselines for which the Fourier Transform of the object is measured.

3.D. A non-convex criterion

The strict convexity of the criterion is a sufficient condition of uniqueness of its minimum,

and ensures the good behavior of classical minimization algorithms [8]. We show now

that the functionalJ1 of equation (6) is not convex. BecauseV is linked toX by a linear

operator (see equation3), the convexity ofJ̃1 defined byJ̃1(V (X)) = J1(X) is equivalent

to the convexity ofJ1. BecausẽJ1 is a sum ofNb independent terms, we can deal with the

caseNb = 1 without loss of generality. ThenV meas reduces to a complex numberz0, and

V to a complex numberz. J̃1 reads:

J̃1(z) =
(|z| − |z0|)2

σ2
||

+
(arg z − arg z0)

2

σ2
arg
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The choice ofz1 = z0 exp(2iπ
3

) andz2 = z0 exp(−2iπ
3

) yields J̃1(z1) = (2π/3)2

σ2
arg

, J̃1(z2) =

J̃1(z1) andz1 + z2 = −z0. Hence, we get

J̃1

(

z1 + z2
2

)

=
(|z0|/2)2

σ2
||

+
π2

σ2
arg

1

2

(

J̃1 (z1) + J̃1 (z2)
)

= 0 +
4π2/9

σ2
arg

SoJ̃1

(

z1+z2

2

)

> 1
2

(

J̃1 (z1) + J̃1 (z2)
)

, which contradicts the convexity of̃J1 (actually, this

example shows the non convexity of both the phase term and themodulus term ofJ̃1).

4. An equivalent additive Gaussian noise

In this section, we design an additive Gaussian approximation of the noise distribution,

optimally “close” to the true one (in terms of a distance to bedefined in the sequel), which

yields a quadratic data likelihood criterion. We first recall the “true” distribution, then we

state the general shape of any complex Gaussian distribution, expressed in a convenient

basis, and we conclude by selecting the parameters of the optimal one.

4.A. Statement of the true distribution

Once again, we only have to study the complex unidimensionalproblem, which is general-

ized without any difficulty. We consider the following model:















|z| =|z0| + r

arg z =arg z0 + ϕ

(7)

Hence,z = (|z0| + r) exp [i(arg z0 + ϕ)] with r andϕ following Gaussian centered dis-

tributions of variances Var(r) = σ2
r and Var(ϕ) = σ2

ϕ. It is the model of (4).
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The probability distribution ofz is


















p (z = (|z0| + r) exp [i(arg z0 + ϕ)]) = f(r, ϕ)

f(r, ϕ) ∝ exp

[

−1

2

(

r2

σ2
r

+
ϕ2

σ2
ϕ

)] (8)

We want to approximate this distribution by an additive one.So, we have to recast model (7)

in an additive one:

z = z0 +B (9)

and we choose to writeB as

B = (x+ iy) exp (i arg z0) . (10)

Identification of (8) and (9,10) yields















x =(|z0| + r) cosϕ− |z0|

y =(|z0| + r) sinϕ

(11)

It is simple to see thatx andy are the coordinates ofB in the Cartesian basis(ux,uy),

corresponding to the canonical(ℜ,ℑ) one, rotated by anglearg z0 (see Figure1).

4.B. Statement of a complex Gaussian distribution

A complex noise is Gaussian if its vector representation in Cartesian coordinates is Gaus-

sian. We choose the aforementioned Cartesian basis(ux,uy). The change of basis is achieved

by a rotation matrixR(arg z0), with

R(ψ) =









cosψ sinψ

− sinψ cosψ









. (12)
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Any additive Gaussian noise distribution can be writtenp(z = z0+(x+iy) exp [i arg z0]) =

fg(x, y), with:

fg(x, y) =
1√

2π det Σ
exp















−1

2









x− x̄

y − ȳ









t

Σ−1









x− x̄

y − ȳ























(13)

with Σ a symmetric positive definite matrix.

We now compare it to the true distribution of(x, y) stated in Equations (8) and (11).

4.C. Kullback-Leibler divergence minimization

In order to choose the additive Gaussian distribution closest to the true one, we have

to define a distance between two distributions. A convenientand well known one is the

Kullback-Leibler divergence, defined by:

δ(f1, f2) =

∫

f1 log

(

f1

f2

)

.

Note that technically, this divergence is not a distance, because it is not symmetric. It

is however often used as a discrepancy measure off1 w.r.t. f2 because it is positive and

equal to 0 only forf1 = f2. δ(f1, f2) is the expectation of the “log-distance” between two

distributionslog
(

f1

f2

)

, w.r.t. the probability distributionf1. To fit a Gaussian distributionfg

on the true distributionf , it is therefore natural to minimizeδ(f, fg) rather thanδ(fg, f).

As proved in the Appendix, the minimization ofδ(f, fg) yields the following optimal
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parameters :







































































x̄ = Ef {x} = |z0|
[

exp

(

−
σ2

ϕ

2

)

− 1

]

ȳ = Ef {y} = 0

Σ = Diag{σ2
1, σ

2
2}

σ2
1 = Ef

{

(x− x̄)2
}

=
|z0|2 + σ2

r

2
[1 + exp

(

−2σ2
ϕ

)

] − |z0|2 exp
(

−σ2
ϕ

)

σ2
2 = Ef

{

(y − ȳ)2
}

=
|z0|2 + σ2

r

2
[1 − exp

(

−2σ2
ϕ

)

]

(14)

The radial bias̄x can be estimated fromz andσϕ as x̄ ≈ |z|
[

exp
(

−σ2
ϕ

2

)

− 1
]

. We

shall notem the complex bias of coordinates(x̄, ȳ).

4.D. Two Gaussian approximations

Circular approximation This simple isotropic Gaussian approximation, inherited from

Radio Imaging, is obtained by settingσ1 andσ2 in Equation (14) to the same value. Such

an approximation is valid in Radio Imaging with stable interferometers, and has been also

used in optical interferometry [9]. However, it is not adapted to noise distributions in which

the modulus standard deviation is different from the phase standard deviation, which is

often the case in optical interferometry. We show here how todesign an approximation

specifically dedicated to process optical interferometry data.

Optimal approximation Instead of a circular approximation, we propose a second order

expansion of the optimal Gaussian approximation stated in Equation (14), i.e. we consider
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thatσϕ/2π andσr/|z0| are small w.r.t. 1:



















































x̄ = 0

ȳ = Ef {y} = 0

σ2
1 = σ2

r

σ2
2 = |z0|2σ2

ϕ

(15)

Why choose the optimal approximation? The contours of the distribution ofz around

z0 are plotted in figures2 and3 for the true noise statistics, for the optimal Gaussian ap-

proximation (more precisely, its second order expansion) and for the circular one. In Fig.3,

the radial noise level, i.e in the directionux, given by σr

|z0|
, is greater than the one in the

directionuy given byσϕ, whereas it is the opposite in Fig.2.

For both configurations, these contour maps illustrate thatour approximation fits better

the true distribution.

4.E. N dimension case

With our Gaussian approximation, the data-likelihood for one measurementV meas
0 is

Jg(X) = −2 log fg(V
meas
0 − V0(X)).

With (12) and (13), we get:

Jg(X) = ‖V meas
0 − V0(X) −m0‖2

Σ0,R
(16)

with

Σ0,R = R(− arg V meas
0 ) Σ R(arg V meas

0 ) (17)

12
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and

‖.‖2
Σ0,R

l =









ℜ(.)

ℑ(.)









t

Σ−1
0,R









ℜ(.)

ℑ(.)









(18)

This expression can be easily generalized forN measurements:

Jg(X) =

N−1
∑

i=0

‖V meas
i − Vi(X) −mi‖2

Σi,R
(19)

= ‖V meas − V (X) − m‖2
Σ (20)

Σ being bloc diagonal, with its blocks equal to theΣi,R.

5. Validation on simulations and on experimental data

In this section, we compare “circular” approximation and our optimal Gaussian approxi-

mated distribution, denoted as “ elliptic”, in terms of reconstruction performances. To do

so, we use either “circular” or “ elliptic” noise model to build the data likelihood term,

which we associate with the same prior term (see section5.A.2) in a Bayesian reconstruc-

tion process.

Although our model clearly fits better the noise distribution, its performances are highly de-

pendent on the noise outcome affecting the data. Hence, we will generate a hundred noise

outcomes, in order to assess the average gain induced by our approximation.

We will then show that our method performs satisfactorily onreal data.

5.A. Simulations

5.A.1. Simulated data

The data we process simulate VLTI measurements when observing an object correspond-

ing to the model of the Ru Lupus Micro-jet developed by Paulo Garcia et al. [10]. The

13
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frequency coverage (Fig5b) has to be chosen rich enough to highlight the differences be-

tween reconstructions. Indeed, our method focuses on the data likelihood, which affects all

the more the reconstruction quality as there are many data. The frequency coverage cor-

responds to six nights of observation of the same source with3 telescopes of the VLTI,

with 20 measurements each night. As already mentioned, we consider that the effects of

turbulence are corrected enough to be included in the noise.The complex visibilities are

corrupted by noise according to model (4), with σ||,i = |V meas
i | × 4.65% andσarg,i = 0.27

radians for alli.

5.A.2. Regularization and constraints

We choose a Gaussian and shift-invariant prior distribution for X[11], so the distribution

of its Fourier TransformX̃ is a Gaussian distribution with a diagonal covariance matrix,

and the diagonal components are the values of the object Power Spectrum Density (PSD)

PSD(ν). Thus, the prior term reads :

Jprior(X) =
∑

ν

∣

∣

∣
X̃(ν) − X̃m(ν)

∣

∣

∣

2

PSD(ν)
.

The mean object̃Xm is assumed to be constant, with its flux equal to the measured flux,

i.e. the null frequency measured visibility.

The PSD model chosen is the function

PSD(ν) =
K

(

|ν|
ρ0

)p

+ 1
.

The parametersK, p andρ0 are estimated by a maximum likelihood on the data.

As noted in [11], K plays the role of the regularization parameterλ (See Eq.5), and can

14
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be directly estimated from the data. Thus, the method is completely unsupervised, i.e.no

parameter has to be set by the user.

Reconstruction uses a BFGS-method (Broyden-Fletcher-Goldfarb-Shanno) software

OP-VMLM, designed by Eric Thiébaut[12], and is performed under positivity constraint.

To compare the circular approximation with our method, we compute for each noise out-

come an Improvement of the Root Mean Square Error (IRMSE) in decibels (dB). A posi-

tive IRMSE means a better reconstruction with our method. Figure (4) shows the IRMSE

repartition histogram for the 100 noise outcomes.

The improvement is 4 dB in average, and 95% of the reconstructions have an IRMSE

of more than 2dB. We can conclude that our elliptic approximation performs much better

than the circular one, in terms of reconstructed image quality.

As mentioned before, reconstructions are performed withλ = 1. To measure the in-

fluence ofλ on the IRMSE, we have processed the same data withλ = 0.1 andλ = 10.

Table (1) provides IRMSE means and standard deviations over the 100 reconstructions for

differentλ.

For a variation of a decade around the nominalλ value, we still witness a clear recon-

struction improvement with our method.

5.A.3. Reconstructions

To further illustrate the interest of using our method, we show in Fig 5 typical reconstruc-

tions for both methods: we have selected among 100 noise outcomes the one yielding an

IRMSE close to the mean value. Our method obviously helps reducing the noise , yielding

an Improvement of the Root Mean Square Error (IRMSE) worth 4 dB in average.

15
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In next section, we process real experimental data in order to demonstrate the efficiency of

our method with realistic noise distribution and frequencycoverage.

5.B. Validation on experimental data

5.B.1. Experimental setup

Experimental data were graciously supplied by Laurent Delage and François Reynaud and

correspond to the experiment described in Ref. [1] . The object is made of four stars of var-

ious magnitudes, and is observed through a fiber link interferometer featuring 61 frequency

measurements. The data model used corresponds to system (4), because only the standard

deviation of measurements are provided.

5.B.2. Regularization

Reconstructions are done under positivity constraint. We also use the quadratic regulariza-

tion term described in section5.A.2

5.B.3. Reconstruction

Fig. (6) shows the contour maps of the true object and the restored one. The 4 structur-

ing elements are correctly reconstructed, although quadratic regularization slightly over-

smoothed them. Table (2) shows that our reconstruction is correct in terms of relative posi-

tions of the peaks. We here validate that our method is efficient and usable on experimental

data.

16
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6. Concluding comments

We have designed an accurate data-likelihood criterion, which closely mimics the noise

model while keeping the criterion convex. Our method performed satisfactorily both on

simulated data and on experimental material. However, moresophisticated regularization

should be investigated. Additionally, this paper did not address how to deal with closure

phases instead of visibility phases. This can be done by using “Self-Calibration” methods,

which alternate transfer function estimation steps with object reconstruction steps[13, 9].

We are currently developing an original self-calibration procedure which uses the likeli-

hood approximation techniques developed in this paper.14

A. Kullback-Leibler Distance Optimization

We show here that for any given distributionf(X), the Gaussian distribution defined by:

g(X) =
1√

2π det Σ
exp

[

−1

2
P (X)

]

with Σ a symmetric positive definite matrix and

P (X) =
(

X − X̄
)t

Σ−1
(

X − X̄
)

which reaches the minimum of the Kullback-Leibler Distanceδ(f, g) is such that:

X̄ = Ef {X}

Σ = Ef

{

(X − Ef {X}) (X − Ef {X})t}

= Var(X)

(21)

This property may result from general results of probability theory, but we provide here a

compact and self-contained proof.
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A.A. Definition of the Kullback-Leibler Distance

The distanceδ(f, g) is defined by

δ(f, g) =

∫

f(X) log
f(X)

g(X)
dx

= −Ef {log g} + cst

So

δ(f, g) =
1

2
(Ef {P (X)} + log det Σ) + cst

A.B. First order terms

∂δ(f, g)

∂X̄
= 0 ⇒ ∂Ef {P (X)}

∂X̄
= 0

⇒ Ef

{

∂P (X)

∂X̄

}

= 0

⇒ Ef

{

2Σ−1
(

X − X̄
)}

= 0

⇒ Ef

{(

X − X̄
)}

= 0

⇒ Ef {X} = X̄

A.C. Second order terms

∂δ(f, g)

∂Σ
= 0

⇒ ∂

∂Σ
[Ef {P} + log det Σ] = 0

⇒ Ef

{

∂P

∂Σ

}

+
∂ log det Σ

∂Σ
= 0

⇒ Ef

{

−Σ−t
(

X − X̄
) (

X − X̄
)t

Σ−t
}

+ Σ−t = 0

18
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BecauseΣ is symmetric, we have:Σ−t = Σ−1, so

∂δ(f, g)

∂Σ
= 0

⇒ Σ−tEf

{

(

X − X̄
) (

X − X̄
)t

}

Σ−t = Σ−t

⇒ Ef

{

(

X − X̄
) (

X − X̄
)t

}

= ΣΣ−tΣ

⇒ Σ = Ef

{

(

X − X̄
) (

X − X̄
)t

}

⇒ Σ = Var(X)

which concludes the proof.

A.D. 2-dimensional case

g(x, y) =
1√

2π det Σ
exp−1

2
P

P (x̄, ȳ) =









x− x̄

y − ȳ









t

Σ−1









x− x̄

y − ȳ









is such that:

x̄ = Ef {x}

ȳ = Ef {y}

Σ = Ef























x− x̄

y − ȳ

















x− x̄

y − ȳ









t













(22)
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Table Captions:

• Table.1 :Influence of regularization parameter on IRMSE

• Table.2 :Relative positions and flux of the 3 faintest star w.r.t. thebrightest one
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Table 1. Influence of regularization parameter on IRMSE

λ mean(IRMSE) Std. Dev. (IRMSE)

0.1 2.6 1.8

1 4.1 1.4

10 7.8 0.9
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Table 2. Relative positions and flux of the 3 faintest star w.r.t. the brightest one

Position error

(w.r.t. main star diameterD)

Intensity

(−2.5 log10 flux)

star # ∆x/D ∆y/D true reconstructed

1 0 0 1.33 1.07 ± 19%

2 0.13 0.05 1.89 1.72 ± 9%

3 0.03 0.06 2.20 1.95 ± 11%

4 0.01 0.08 2.44 2.41 ± 2%
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Figure Captions:

• Fig.1 :Polar and Cartesian coordinate systems inC.

• Fig.2 : Noise distribution contour lines, forσr

|z0|
< σϕ

• Fig.3 :Noise distribution contour lines, forσr

|z0|
> σϕ

• Fig.4 :IRMSE repartition histogram

• Fig.5 : Simulation results : (a) True object , (b) u-v coverage : 360frequencies, (c)

reconstruction with elliptic approximation and (d) reconstruction with circular ap-

proximation.256 × 256 pixels. Pixel size : 0.2 marcsec.

• Fig.6 :True object (left) and restored one (right). Contour levels :10%, 20%, . . . , 100%

of the maximum.

• Fig.7 :True object (left) and restored one (right). D is the diameter of the main star,

used in table2.

• Fig.8 :Experimental frequency coverage.
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ℑ
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~uy
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ℜ

Fig. 1. Polar and Cartesian coordinate systems inC.
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Approximation

Approximation

Elliptic
Gaussian

z0

ℜ

Noise statistic

Circular
Gaussian

ℑ

O

Fig. 2. Noise distribution contour lines, forσr

|z0|
< σϕ
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Approximation

Approximation

Gaussian

ℜ

Noise statistic

Circular
Gaussian

Elliptic

O

z0

ℑ

Fig. 3. Noise distribution contour lines, forσr

|z0|
> σϕ
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Fig. 4. IRMSE repartition histogram
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(a) (b)

(c) (d)

Fig. 5. Simulation results : (a) True object , (b) u-v coverage : 360 frequencies,

(c) reconstruction with elliptic approximation and (d) reconstruction with circular

approximation.256 × 256 pixels. Pixel size : 0.2 marcsec.
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Fig. 6. True object (left) and restored one (right). Contourlevels :

10%, 20%, . . . , 100% of the maximum.
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D

Fig. 7. True object (left) and restored one (right). D is the diameter of the main star,

used in table2.
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Fig. 8. Experimental frequency coverage.
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