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Optimal control law for classical and
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Classical adaptive optics (AO) is now a widespread technique for high-resolution imaging with astronomical
ground-based telescopes. It generally uses simple and efficient control algorithms. Multiconjugate adaptive
optics (MCAO) is a more recent and very promising technique that should extend the corrected field of view.
This technique has not yet been experimentally validated, but simulations already show its high potential.
The importance for MCAO of an optimal reconstruction using turbulence spatial statistics has already been
demonstrated through open-loop simulations. We propose an optimal closed-loop control law that accounts for
both spatial and temporal statistics. The prior information on the turbulence, as well as on the wave-front
sensing noise, is expressed in a state-space model. The optimal phase estimation is then given by a Kalman
filter. The equations describing the system are given and the underlying assumptions explained. The control
law is then derived. The gain brought by this approach is demonstrated through MCAO numerical simula-
tions representative of astronomical observation on a 8-m-class telescope in the near infrared. We also discuss
the application of this control approach to classical AO. Even in classical AO, the technique could be relevant
especially for future extreme AO systems. © 2004 Optical Society of America
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1. INTRODUCTION
High-resolution imaging with ground-based telescopes is
now possible with adaptive optics (AO). However, classi-
cal AO, which uses a single deformable mirror (DM) in the
pupil, provides a limited corrected field of view (FOV).
Large FOV corrections can be obtained by correcting the
turbulence volume above the telescope, with several DMs
optically conjugated at various altitudes and with several
wave-front sensors (WFSs) looking at guide stars (GSs), a
process that corresponds to the concept of multiconjugate
adaptive optics (MCAO). This concept was first proposed
by Dicke1 and reintroduced in the early 1990s in the pa-
pers of Beckers,2 Tallon et al.,3 and Ellerbroek.4 More
recently, an impressive number of MCAO papers have
been published, all showing the high potential of this
technique.5–11

MCAO brings new problems in reconstruction and con-
trol: It leads to a larger number of degrees of freedom,
and it relies on a complex reconstruction process for the
phase estimation in the volume. The presence of unseen
and so-called badly seen modes (see Section 3) requires a
careful treatment of this inverse problem. These modes
have to be estimated to ensure a good interpolation of the
perturbation between GSs and, in turn, a good perfor-
mance in the global FOV. In MCAO, such unseen modes
can be numerous, they evolve with the GS geometry, and
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they are difficult to visualize since they correspond to a
phase in the turbulence volume. For all these reasons,
MCAO requires us to find systematic ways of deriving an
optimal control law that accounts for the system charac-
teristics, including the GS geometry, and for the spatial
and temporal priors on turbulence and noise. Besides,
the optimization needs to be global, that is, applied to the
multivariable servoloop.

Control laws based on a mode-per-mode optimization,
and generally used in classical AO,12–16 could be general-
ized to MCAO, but their performance is not optimal since
they cannot take advantage of the global spatial priors on
the turbulence related to Kolmogorov statistics and to the
distribution of the turbulence strength in altitude. The
need for a global optimization for an efficient estimation
of unseen modes has already been demonstrated in ideal
open-loop simulations.6 Future real MCAO systems will,
however, operate in closed loop. The objective of this pa-
per, and its most innovative aspect, is to propose a closed-
loop control law resulting from a global optimization and
to demonstrate its efficiency in the context of MCAO. We
propose an approach based on a state-space-model for-
malism, a Kalman filter, and a feedback control derived
from the classical linear estimation theory.17–19 Global
approaches based on Kalman filtering have already been
proposed in the literature.20,21 In our paper we make
2004 Optical Society of America
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some assumptions that simplify the theoretical develop-
ments. We assume that the DMs are fast compared with
the sampling period. This assumption is often valid for
astronomical applications. Paschall and Anderson20

have shown that the mirror dynamics can be taken into
account in the same framework when necessary. We also
derive our control law from a simple turbulence-temporal-
prior-model, but we show in Subsection 5.C.2 that good
performance can still be obtained when one is correcting
realistic turbulent screens (Taylor model). Note that
Gavel and Wiberg21 recently proposed a model that could
truly account for the Taylor hypothesis. Finally, our pa-
per is, to our knowledge, the first one that applies such an
approach to MCAO. Throughout the paper we explain
why this approach is particularly relevant in the context
of MCAO, often referring to the unseen mode issue.

The performance of the proposed approach is quantified
by numerical simulations. The system that we simu-
lated is representative of astronomical observations on a
8-m-class telescope in the near infrared. We begin by
simulating a classical AO system. We compare the re-
sults with those obtained by the most common control
law, the optimized modal gain integrator12,22 (OMGI).
We start with a simplified temporal model and then show
that a Kalman approach based on this approximative
prior is still able to efficiently correct a realistic Taylor
turbulence. In classical AO, the major gain is due to the
capability of our approach to make a good prediction.
But we verify also that it is able to deal efficiently with
the unseen modes. This last point becomes a very impor-
tant aspect in the MCAO case. Finally, we simulate this
more complex case and compare the performance of our
approach with that of the Optimized Modal Gain Integra-
tor generalized to MCAO. This results demonstrate the
gain brought by the Kalman approach in the MCAO con-
text.

The MCAO system is presented in Section 2. The
open-loop optimal reconstruction is briefly recalled in Sec-
tion 3. Our closed-loop optimal approach is described in
Section 4, and its links with previous works are discussed.
In Section 5, we present numerical simulations in classi-
cal AO and in MCAO.

2. MULTICONJUGATE ADAPTIVE OPTICS
AND OPTIMAL CONTROL
The anisoplanatism phenomenon comes from the fact that
the turbulence is not located in one layer on the ground
but in a volume above it. In classical AO, one single DM
located on the telescope pupil cannot correct the turbu-
lence in all directions. The concept of MCAO is based on
correcting anisoplanatism through the use of DMs opti-
cally conjugated at various altitudes in the atmosphere.
We present the system and notation in Subsection 2.A
and, we explain in Subsection 2.B how the estimation and
control problems can be separated.

A. System Description and Notation
The turbulence volume is modeled by NL discrete inde-
pendent turbulent layers located at altitudes $hj%. We
associate with each layer a turbulence strength Cn

2(hj)dh,
where Cn

2(hj) is the index structure constant in layer j
and dh is the thickness of the layer. This turbulence vol-
ume is corrected by NDM DMs optically conjugated at al-
titudes $hj8%. The turbulence statistics are assumed to be
Kolmogorov for each turbulent layer. The geometry of
the system is summarized in Fig. 1.

The measurement is done with several WFSs looking at
several stars, the so-called GSs. We consider NGS GSs in
the b 5 $b i% directions. The FOV of interest, where the
correction has to be optimized, is discretized into K angles
and denoted a 5 $a i%. We note fai

tur the turbulent phase
propagated onto the pupil in the direction a i and fai

cor the
correction phase on the pupil in the direction a i . We
note wtur, j the turbulent phase on layer j and wcor, j the
correction phase given by the DM number j.

The turbulent phase arriving on the telescope pupil in
the direction b i is given, in the near-field approximation,
by the sum of all the turbulent layers’ contributions,

fbi

tur~r! 5 (
j51

NL

wtur, j~r 1 hjb i!, (1)

where r is the position inside the pupil. The correction
phase fbi

cor , generated by the DMs in the direction b i , is
also defined as

fbi

cor~r! 5 (
j51

NDM

wcor, j~r 1 hj8b i!. (2)

In the rest of this paper, rather than talking about con-
tinuous functions of the coordinate r, we will use for f
and w a discrete representation based on a modal expan-
sion of the phase, for instance on the Zernike polynomials.
The turbulent and correction phases f cor and f tur are
then represented by vectors of Nmodes coefficients: $fk

cor%,
$fk

tur%. In this representation, we note wtur 5 $ wtur, j% the
volumic turbulent phase in all layers and wcor 5 $ wcor, j%
the volumic correction phase generated by all the DMs.
wtur is modeled as a stochastic centered variable of Gauss-
ian statistics characterized by its covariance matrix Cw .
As the turbulent layers are independent, Cw is a block
matrix that contains all the covariance matrices for all

Fig. 1. Illustration of the geometry of an MCAO system. Ex-
ample with NL 5 4 layers, NDM 5 2 DMs, and NGS 5 3 guide
stars.
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layers (Kolmogorov weighted by the turbulence strength
Cn

2dh) and zeros for the cross correlations between layers.
Mai

L is defined as the matrix that performs the sum of
the contributions of each turbulent wave front in the di-
rection a i . Mai

DM performs the sum of the contributions of
each DM in the direction a i . Equations (1) and (2) can
therefore be written as

fai

tur 5 Mai

L wtur, (3)

fai

cor 5 Mai

DMwcor. (4)

We define Ma
L as Ma

L 5 @(Ma1

L )T,..., (Mai

L )T,...,
(MaNGS

L )T#T, Ma
L being the matrix that performs the sum of

the contributions of each turbulent wave front in all the
directions a 5 $a i%:

Fa
tur 5 $fai

tur% 5 Ma
Lwtur. (5)

In the same way, Ma
DM is the matrix that performs the

sum of the contributions of each DM in all the directions
a 5 $a i%, which is written Ma

DM

5 @(Ma1

DM)T,..., (Mai

DM)T,..., (MaNGS

DM )T#T.

This notation is also defined in the same way for b i and
b so that Eqs. (3)–(5) can be written by using Mbi

L , Mbi

DM ,
Mb

L , Mb
DM , fbi

tur , Fb
tur , fbi

cor and Fb
cor .

We assume that the response of a DM to voltages is lin-
ear, and we denote by N the matrix defining the linear re-
lationship between the voltages u applied on the DMs and
the generated correction phase wcor :

wcor 5 Nu. (6)

Each column of N corresponds to the modal representa-
tion of the deformation of one DM actuator.

B. Principle of Separation between Estimation and
Control
In order to simplify the analytical expressions of the con-
trol law, one can use the fact that the mirror dynamics
can be neglected. We consider that the DM reacts very
fast compared with the sampling period, tDM ! Tsamp .
This assumption is generally valid for the current astro-
nomical AO systems equipped with piezo-stacked DMs24

and operating at a sampling frequency of a few hundred
herz. At higher sampling rates, or for other types of DMs
(adaptive secondaries), the dynamics have to be taken
into account. Paschall and Anderson20 showed that this
could be done in the state-space framework. They use in
this case a linear quadratic Gaussian control law.

With such an assumption, the optimal correction corre-
sponds to the voltages u that minimize
^e8( wtur, u)&w,noise , where the notation ^ • &w,noise stands
for the average over turbulence and measurement noise
outcomes and e8( wtur, u) is the mean square error, de-
fined as

e8~ wtur, u! 5 (
i

ifai

tur 2 fai

cori2

5 (
i

iMai

L wtur 2 Mai

DMNui2. (7)
if i2 5 1/S*Sf(r)2dr denotes the so-called spatial vari-
ance in the telescope pupil S. if i2 5 ( if i

2 if the base is
orthonormalized.

It can be shown that searching u that minimizes
^e8( wtur, u)&w,noise is equivalent to minimizing consecu-
tively the criterion

e9 5 ^i wtur 2 ŵturi2&w,noise (8)

with respect to ŵtur and then to finding u that minimizes
e8(ŵtur, u).

In Section 4 we will propose an approach that gives the
estimate ŵtur that minimizes Eq. (8). Knowing ŵtur, we
can write the solution of the minimization of the criterion
e8(ŵtur,u) written as

u 5 P@a;DM#ŵ
tur (9)

with the operator

P@a;DM# 5 F(
i

@Mai

DMN#TMai

DMNG1F(
i

@Mai

DMN#TMai

L G ,

(10)

where ( • )1 denotes the generalized inverse. One can
note that this matrix depends only on the number and po-
sitions of the DMs with respect to the true layers and on
the FOV of interest.

This separation property between estimation and pro-
jection is a classical result of linear control theory.19 It
has already been used in the context of MCAO.6,21

3. OPTIMAL RECONSTRUCTION IN OPEN
LOOP
In this section we consider the phase estimation for an
open-loop system, which means that the measurements
are performed on the uncorrected turbulent phase. The
measurement process is presented in Subsection 3.A.
The estimator defined in Subsection 3.C gives the best es-
timate of the turbulent phase for a measurement at a
given time. There are no time series here; we consider
an instant-by-instant estimation. The correction is also
assumed to be instantaneous without delay. The tempo-
ral issues therefore do not apply here; thus only the spa-
tial priors are introduced in this section.

A. Open-Loop Measurement Process
We note fbi

meas the phase analyzed by the ith WFS (in the
direction b i). Because the measurements are done be-
fore the correction, fbi

meas is the turbulent phase arriving
on the telescope pupil in the direction b i :

fbi

meas 5 fbi

tur. (11)

The WFS measurements are assumed to be linear, so
the measurement given by the WFS in the direction b i
can then be expressed as

ybi
5 Dfbi

meas 1 wi , (12)

with D the interaction matrix that defines the linear re-
lation between the phase and the measurement (each col-
umn of D corresponds to the measurements given for a
single-mode phase). Here wi is the measurement noise
for WFS i of covariance matrix Cwi

. Y 5 $ybi
% is defined
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as the vector containing all the measurements for all di-
rections b, w is defined as the vector containing the mea-
surement noise for all WFS, and Cw is its covariance ma-
trix.

B. Notion of Unseen Mode
What we call ‘‘unseen mode’’ is a mode that is not mea-
sured by the WFSs.25–27 An example of unseen modes in
MCAO is shown in Fig. 2. This figure represents two
wave fronts at different altitudes that exactly compensate
each other in the GS directions. The WFSs are blind to
such a wave-front distribution. This also means that
such a mode has no effect on the image quality in the GS
directions. However, it is still very important to estimate
and then correct this mode since the resulting phase in
other observation directions can be nonnegligible. The
more distant the GSs, the smaller the spatial frequency of
the unseen modes and the larger the turbulent energy
contained in these modes. Simply filtering out such
high-energy unseen modes would degrade the perfor-
mance in the FOV, particularly when looking away from
the GS positions. Estimating these modes can actually
be seen as a way of performing an interpolation of the tur-
bulent perturbation in between the GS directions. Of
course since the WFS measurements are noisy, the same
problem applies to modes associated to nonzero but small
signal-to-noise ratio (SNR), so-called badly seen modes.
In the rest of the paper, when we speak of unseen modes,
it should actually be understood that the badly seen ones
are also considered.

C. Minimum-Mean-Square-Error Estimator
The presence of unseen modes and their influence on im-
age quality motivates the use of turbulent-phase recon-
struction that is able to estimate these modes. In the
open-loop case, it has been shown6 that the use of spatial
priors through a minimum-mean-square-error (MMSE)
estimator could satisfy this objective. We now recall this
approach briefly.

As presented in Subsection 2.B, one should estimate
wtur from all the measurements Y so that the criterion of

Fig. 2. Illustration of the concept of unseen modes.
Eq. (8) is minimized. This implies some statistical
knowledge of noise and turbulence.

When Gaussian statistics for noise and turbulence are
assumed, the minimization of this criterion leads to a so-
lution in ŵtur that is linear with respect to the wave-front
measurements. The solution can be written in this
simple form,6

ŵtur 5 Wtomo Y, (13)

with

Wtomo 5 Cw@DMb
L#T@DMb

LCw@DMb
L#T 1 Cw#21, (14)

with Cw and Cw the covariance matrices of the turbulent
phase and the measurement noise. Cw is a block matrix
that contains all the covariance matrices for all layers
(Kolmogorov weighted by the Cn

2 profile) and 0 for cross
correlations between layers. Cw is a block matrix that
contains all the noise covariance matrices corresponding
to all WSFs’ noise, and zero for the cross correlations be-
tween WFSs.

The equation ŵtur 5 WtomoY corresponds to an optimal
stochastic estimation of the turbulent phase on each layer
for single time-sample measurement. This reconstruc-
tion is often called tomographic since it gives a recon-
struction of the turbulence volume from the projections
measured by the WFS. It takes into account the GS ge-
ometry, the WFS measurement model, and the noise and
turbulence statistics, including the Cn

2 profile. Both
noise and turbulence are characterized by their covari-
ance matrices. Note that Wtomo is not related to the DMs
and is independent of the FOV of interest. After this es-
timation of the turbulent phase, as stated in Subsection
2.B, the optimal control consists of a deterministic ‘‘pro-
jection’’ of the tomographic solution onto the DM to obtain
the voltages that optimize the correction in the desired
FOV. It corresponds to P@$a%i;DM# , as already mentioned
in Subsection 2.B.

One can note that if we assume N 5 Id (which is
equivalent to saying that each DM can produce any cor-
rection phase) and D 5 Id (which means the WFS di-
rectly analyze the turbulent modes), Eqs. (10) and (13) ex-
actly correspond to the results given in Ref. 6.

A cruder approach, which is often used to inverse this
ill-posed problem of the phase-correction estimation in
each DM, consists of using a least-square minimization on
measurements iY 2 DMb

DMNui2; see Refs. 28 and 29.
With our notation, this wave-front estimator is given by

u 5 @@DMb
DMN#T@DMb

DMN##1@DMb
DMN#TY. (15)

Because @Mb
DM#T@Mb

DM# is generally ill-conditioned, the in-
version is made by using a singular-value decomposition
in which the lower singular values are set to zero in order
to avoid the noise amplification [truncated singular-value
decomposition (TSVD)].

It has been shown29 that the MMSE estimator gives
quite a bit better results than the TSVD method, what-
ever the truncation threshold is.

There are essentially two reasons why the MMSE is
better than the TSVD approach, especially in the pres-
ence of energetic unseen, or badly seen, modes. The first
one is the optimal minimization of noise propagation (no
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ad hoc threshold adjustment procedure). The second
fundamental reason is that the MMSE not only controls
the noise amplification on unseen modes but also esti-
mates these modes by using their correlation with better-
seen modes. The unseen modes appear in the basis that
diagonalizes

@DMb
DMN#T@DMb

DMN# (16)

as the eigenvectors associated with zero, or nearly zero,
eigenvalues.

In general, @DMb
DMN# is not square but rectangular.

The size of this matrix depends on the number of DMs,
the number of actuators, the number of GSs, and the
number of measurements by the WFS. For example, in
the realistic case that we simulate in Subsection 5.D,
there are a total of 482 corrected modes and a total of 312
measured modes (see Subsection 5.D for more details).
In that case, there are many unseen modes. In the opti-
mal approach,29,30 the use of spatial priors allows us to
partially recover these unseen modes, whereas a TSVD
simply filters them out.

4. OPTIMAL CONTROL LAW FOR CLOSED-
LOOP OPERATION
We showed in Section 3 that to estimate the unseen
modes with the open-loop MCAO control law, the use of
spatial priors is mandatory.

A real AO or MCAO system is not open loop but closed
loop. What we call a closed loop is a system in which the
WFSs are behind the DMs and analyze the residual
phase. This means that the open-loop MMSE approach
presented above is not directly implementable in a real
system. It turns out that it is necessary to define a
closed-loop control law that retains the ability to estimate
unseen modes by the use of spatial priors.

The optimal control of a realistic closed-loop system
with a temporal delay actually requires that both spatial
and temporal priors be accounted for.

We present the system in Subsection 4.A, and in Sub-
section 4.B we describe the temporal and spatial priors in
a state-space model. The estimator proposed in Subsec-
tion 4.C gives, for a given temporal sequence of measure-
ments, the best estimate of the turbulent phase in the
mean-square sense, knowing the temporal and spatial
statistics of turbulence and noise. As explained in Sub-
section 2.B, once ŵtur is known, the optimal voltages are
given by Eq. (9).

A. Closed-Loop Basic Relationships
The measurements are obtained with an exposure time T,
and the correction wcor(t) is constant between (n 2 1)T
and nT, where n corresponds to the frame number. Thus
the problem can be discretized by using T as the sampling
period. For any continuous variable f(t), one can associ-
ate the discrete quantity fn defined as

fn 5
1

T
E

~n21 !T

nT

f~t !dt. (17)

The temporal diagram of the system in Fig. 3 shows
how measurements and computations follow one another.
The CCD camera integrates during one sampling period,
and it is read out during the following period. Here we
assume that the voltage computation is done during the
same time period as the CCD readout. The voltages are
applied during the following period of time. There is
then a two-sampling-period delay between the beginning
of the integration and the application of the correction.
This corresponds to a rather common case for astronomi-
cal systems. Of course, other situations could be ac-
counted for. For example avalanched photodiodes often
used in curvature WFSs lead to a significantly reduced
readout time. In any case, the total delay cannot be
smaller than one sampling period because of the integra-
tion time.

The turbulent phase in all layers wn
tur , the correction

phase in all DMs wn
cor , and the residual phase in the pupil

in the NGS GS directions Fn
res are linked by

$fbi

res%n 5 Fn
res 5 Mb

Lwn
tur 2 Mb

DMwn
cor , (18)

where Mb
L and Mb

DM are the matrices defined in Subsec-
tion 2.A.

Let N be the matrix defined in Subsection 2.A and un21
the voltages applied between n 2 1 and n, un21 is linked
to the correction phase wn

cor induced by the DM between
n 2 1 and n by the relation

wn
cor 5 Nun21 . (19)

It must be noted that Eq. (19) means that the mirror dy-
namics are neglected, as already mentioned in Subsection
2.B. Vector un , which is applied between n and n 1 1,
should be given from Eq. (9) by the knowledge of ŵn11

tur ,
which minimizes

en119 5 ^i wn11
tur 2 ŵn11

tur i2&w,noise . (20)

Considering the time delay, the measurements that are
used to compute un are

Yn 5 DFn21
res 1 wn , (21)

D being the matrix defined in Section 3 and w a white
noise (measurement noise). Its covariance matrix is de-
noted Cw . Then, by using Eqs. (18) and (19), one can get

Yn 5 D~Mb
Lwn21

tur 2 Mb
DMNun22! 1 wn . (22)

Our prior knowledge of the turbulence temporal evolution
can be expressed with an autoregressive (AR) model,

wn11
tur 5 F{ wn

tur , wn21
tur , wn

tur ,...} 1 nn , (23)

Fig. 3. Temporal diagram showing the different time intervals.
wn

cor , wn
tur , and Fn

res are integrated between n 2 1 and n, and
un21 is applied in the same time interval.
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where n is a white noise, of covariance matrix Cn , and F
is a linear function. In the rest of the paper, we have cho-
sen to use the following first-order AR prior model:

wn11
tur 5 Awn

tur 1 nn . (24)

In this model, Cn can be easily determined in order to con-
serve the global energy of the turbulence; hence

Cn 5 Cw 2 ATCwA, (25)

with Cw the covariance matrix of the turbulent phase.
With a first-order-prior model the temporal correlation

function decreases exponentially. Real turbulence tem-
poral evolution31 can be fitted more precisely by using a
higher-order model. We will discuss the choice of the
prior model in more detail in Subsections 5.A and 5.B.

B. Linear State-Space Model
A linear state-space model describes the dynamical be-
havior of a system and its outputs (measurements) by us-
ing a state-space vector, whose evolution is given by a lin-
ear equation called the state equation.

In our case, the state model based on a state vector Xn
must summarize the basic relationships of the system
into the standard stationary formulation,19

Xn11 5 AXn 1 Bun 1 Vn , (26)

Yn 5 CXn 1 wn , (27)

where wn is the noise defined in Eq. (21) and Vn is a
Gaussian white noise with covariance matrix CV .

The choice of the state vector is crucial. X must con-
tain all the variables necessary for Eqs. (22) and (23) to be
summarized into Eqs. (26) and (27) and for the estimation
of the voltages u. Equation (22) implies then that Xn
must contain wn21

tur and un22 . The voltages un are deter-
mined only through Xn so as to correct wn11

tur (this corre-
sponds to a prediction). This implies that wn11

tur must be
in Xn .

At this stage, Xn is composed of at least wn11
tur , wn21

tur and
un22 . For the evolution equation for wn11

tur to be written,
wn

tur must be in the state vector, too; and, as un22 must be
kept in memory, un21 is also contained in Xn .

Xn needs also to contain all the wn2i
tur used in Eq. (23).

For the first-order prior model considered in this paper,
we need only wn

tur , which is in any case already included
in Xn . For a model order less than 3, the state vector is
left unchanged, as wn

tur and wn21
tur are contained in the

state vector Xn . For a model order higher than 3, the
state vector should incorporate a larger number of time
steps.

For a first-order-AR prior model, the state vector is
then

Xn 5 S wn11
tur

wn
tur

wn21
tur

un21

un22

D
and the state model is
Xn11 5 F A 0 0 0 0

Id 0 0 0 0

0 Id 0 0 0

0 0 0 0 0

0 0 0 Id 0

GXn 1 F 0

0

0

Id

0

G un 1 S nn

0

0

0

0

D ,

(28)

Yn 5 D@0 0 Mb
L 0 2Mb

DM N#Xn 1 wn .
(29)

C. Kalman Filter and Feedback Control
As stated in Subsection 2.B, once the estimation of Xn is
done in order to minimize Eq. (20), the optimal command
is given by Eq. (9).

If a system can be described by a linear state model, the
optimal estimation of Xn , minimizing a given quadratic
criterion, is provided by a Kalman filter,17

X̂n/n 5 X̂n/n21 1 Hn~Yn
meas 2 C X̂n/n21!, (30)

where X̂n/n is the estimation of Xn obtained by using
$Y0 ,..., Yn%. The vector Yn

meas stands for the experimen-
tal measurement at n [as opposed to the measurement
model Yn of Eq. (29)]. In a Gaussian framework, this es-
timate is exactly the posterior mean of Xn with knowledge
of $Y0 ,..., Yn%. By taking the conditional mean of both
parts in Eq. (26), one obtains the prediction vector X̂n11/n

as a linear function of X̂n/n . It gives the recursive esti-
mation,

X̂n11/n 5 AX̂n/n21 1 Bun 1 AHn~Yn
meas 2 C X̂n/n21!,

(31)

where X̂n11/n is the prediction of Xn11 by use of
$Y0 ,..., Yn%. Hn is called the observer gain and is mak-
ing the trade-off between priors and measurements. It is
equal to

Hn 5 Cn/n21CT~CCn/n21CT 1 Cw!21, (32)

with Cw the matrix covariance of the noise and Cn/n21 the
matrix covariance of the state vector estimation error,
predicted for the instant n at the instant n21. Cn/n21 is
computed by solving the Ricatti equation,17

Cn11/n 5 ACn/n21AT 1 CV

2 ACn/n21CT~CCn/n21CT 1 Cw!21CCn/n21AT.

(33)

Practically, the recursive Eq. (31) is the one that has to
be implemented. The new measurement is introduced at
each step as Yn

meas , and the estimate of X̂n11/n at n is
given by Eq. (31). This means that Hn should be esti-
mated at each step, too. The state-model equation does
not appear explicitly in the Kalman filter implementa-
tion. It is present through matrices A, B, C, Cv , and Cw .
Once initial values for X0 and C0 have been chosen, Eqs.
(31)–(33) are the only ones needed for the estimation it-
erations.

One must note that, as we have already said, there is a
delay between the measurement and the correction.
This means that it is necessary to make a prediction of
the evolution of the turbulent phase. The approach that
we propose makes this prediction by using the equation of
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the evolution of the turbulence, induced by Eq. (28). This
is why the state vector Xn contains wn11

tur . The estimation
of Xn therefore implicitly includes this prediction step.

The optimal voltages are then given by Eq. (9):

un 5 P@a;DM#ŵn11/n
tur , (34)

with P@a;DM# the projector given in Subsection 2.B.
It is worth noting that the complete closed-loop system

including Kalman filtering is stable as long as the model
of Eqs. (28)–(29) is relevant and stable.19

D. Kalman Filtering in a Classical Adaptive Optics
Case
The notation and expressions in Section 3 and 4 are de-
fined for the MCAO case. The classical AO case can of
course be seen as a special application of that notation.
The classical AO optimal control can be deduced immedi-
ately from the MCAO case by replacing NDM 5 1, NL
5 1, NGS 5 1, a 5 b, the DM altitude h8 5 0, the layer
altitude h 5 0, and the matrices Ma

DM 5 Mb
DM 5 Id and

Ma
L 5 Mb

L 5 Id. This is what we did in the classical AO
simulations presented in Subsection 5.C.

E. Kalman Filtering and Previous Studies

1. Optimized Modal Gain Integrator
The OMGI was proposed in 1994 by E. Gendron12,13,22,32

and is used in classical AO systems [the Nasmyth Adap-
tive Optics System (NAOS), for instance33]. This ap-
proach minimizes the variance of the residual phase in
the context of an integrator control law. It is performed
mode by mode, for instance on the eigenmodes of the sys-
tem (that is, on the basis that diagonalizes DTD) or on the
Karhunen–Loeve modes. As we will see in Subsections
5.C.3 and 5.D, such a mode-by-mode treatment is subop-
timal, especially when dealing with unseen modes.
Hence the interest of the multivariable Kalman approach
described in this paper.

If the noise and the signal are decorrelated, one can ex-
press, in a Laplace transform representation, the vari-
ance of the ith mode as12,13

s i
2 5 E uEi~ jv!u2^uf̃tur,i~ jv!u2&dv

1 E uHi~ jv!u2^uw̃i~ jv!u2&dv, (35)

where ^uf̃tur,iu2& and ^uw̃iu2& are the temporal power spec-
tral density (PSD) of the turbulent phase and of the noise,
respectively. Ei is the so called rejection transfer func-
tion, and Hi is the noise transfer function; they are both
defined in the Laplace space and depend on the gain of
the integrator.

The higher the gain, the more efficient the correction of
the signal, but the more the noise is amplified, too. By
minimizing s i

2 mode by mode with respect to the gain
(which appears in Ei and Hi), one can obtain the optimal
gain for the modal integrator control law. This gain is
applied in the system eigenmode basis. We must note
that the gains are generally thresholded for stability rea-
sons. With a total time delay in the loop of two frames, it
can be shown that the integrator is strictly stable up to a
unit gain. Yet we will set the maximum gain to 0.5 to re-
spect the standard stability margins.14,34

It must be noted here that an integrator control law
does not explicitly include a prediction of the turbulence
evolution. There is in fact in the integrator an implicit
model of evolution that corresponds to a static phase.
This model is indeed not very relevant and does not ac-
count efficiently for the temporal evolution of turbulence.

2. Closed-Loop Generalization of the Open-Loop
Minimum-Mean-Square-Error Approach
The Kalman approach as defined above can be seen as an
implementation in closed loop of the open-loop MMSE ap-
proach.

Indeed, considering the estimation part, one can first
note that the state vector consists only of wn

tur , because
there is no delay between the measurements and the cor-
rections in the open-loop description used in Section 3 and
because there is no time series of turbulent phase and the
phase is estimated instant by instant. We also get A
5 0 (which means only that there is no temporal corre-
lation) and an adapted measurement equation (C
5 DMb

L). The Kalman estimator then exactly boils
down to the open-loop estimator given in Eq. (14): With
wn

tur as state vector, Eq. (30) becomes

ŵn/n
tur 5 ŵn/n21

tur 1 Hn
1~Yn

meas 2 Dŵn/n21
tur !, (36)

where Hn
1 is the new Hn adapted to the open-loop system.

As A 5 0, Eq. (33) gives Cn11/n 5 Cn . Matrix Hn
1 is then

given by Eq. (32) and is equal to

Hn
1 5 Cn~DMb

L!T@DMb
LCn~DMb

L!T 1 Cw#21, (37)

with Cn 5 Cw . The turbulent phase from one instant to
the other is then totally decorrelated, and the prediction
for the turbulent phase ŵn/n21

tur is 0.
By replacing ŵn/n21

tur with 0 in Eq. (36) and Hn
1 with its

expression, one finds indeed the tomographic open-loop
optimal expression already given in Eq. (14).

This is quite important because it means that previous
results and such conclusions given in open loop with the
optimal approach in MCAO,5,6,29,35 as the optimal number
of DMs, number and geometry of GSs, FOV and achiev-
able performance, should also be verified in closed loop.

3. Comparison with Previous Studies on Prediction
In 1998 Dessenne et al.14 proposed a temporal predictor.
The global servoloop was assumed to be composed of par-
allel scalar servoloops applied to some modal coefficients.
Each modal control law was then derived from the tem-
poral priors expressed in a frequency representation.
The so-called modal predictor was shown to use the tem-
poral priors more efficiently than the OMGI approach.

For one mode, the transfer function of the corrector can
be expressed in a z-transform representation as

C~z ! 5

(
i50

q21

aiz
2i

1 1 (
i51

p21

biz
2i

, (38)
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where (ai)0,i,q21 and (bi)1,i,p21 are parameters to be
adjusted (and z represents the z-transform variable); p
and q define the corrector order.

The corrector can be expressed in a state-model formal-
ism, which uses an implicit model for the evolution of the
turbulence. This model can be read for mode m as

wn11
tur,m 5 (

i51

p21

biwn2i
tur,m 1 nn . (39)

The equivalent estimator in the state-model formalism
takes the form of Eq. (30) in which the equivalent Hn is no
longer given by the Kalman filter theory. The equivalent
Hn is a function of (ai)0,i,q21 and (bi)1,i,p21 , which is
no longer optimal. This approach must also deal with
the problem of the stability of the control. The param-
eters (ai)0,i,q21 and (bi)1,i,p21 must then be adjusted
under a stability constraint. The Kalman filter, as noted
in Subsection 4.C, ensures the stability of the control loop
as long as the model used does not diverge, which is en-
sured here through Eq. (25), and as long as the model is
not too far from the system.

Finally, the other main limitation of Dessenne’s ap-
proach comes from the fact that, like the OMGI, it pro-
poses a mode-by-mode tuning rather than a global optimi-
zation of the AO multivariable servoloop.

4. Previous Attempts to Use a Kalman Filter in
Classical Adaptive Optics
In 1993, Paschall and Anderson20 proposed to use a Kal-
man filter (along with a state-space model) to control a
classical AO system. There are several differences be-
tween their proposal and ours. First, our control law is
adapted to MCAO and not only to the classical AO. Sec-
ond, our analytical expressions are considerably simpli-
fied because we restrict our formulation to the case in
which mirror dynamics can be neglected (see the discus-
sion in Subsection 2.B). Finally, we avoid some difficul-
ties by treating the problem as a discrete-time problem
from the beginning. Paschall and Anderson were model-
ing one part of the system as continuous (for instance, the
turbulence) and the other as discrete (the WFS), which
forces linkage of the two parts later on.

F. Practical Considerations

1. Number of Operations and Computing Time
Before comparing the performance of a Kalman filter with
other types of estimators in different cases, it is interest-
ing to compare the practical operations that are necessary
in our approach and in an integrator approach.

The most basic and usually used control law is the so-
called integrator law. Each time the system gets a new
measurement yn , with an integrator the new command is
computed as

un 5 un21 1 McomYn
meas , (40)

where Mcom is the command matrix. It is the only pa-
rameter that can be adjusted. The integrator control law
does not provide any estimation of the turbulent phase.

With a Kalman filter the new command is a projection
of one component of the predicted state vector given by
Eq. (31).
In fact, in practice, it is possible to decrease the number
of stored parameters by dividing the state vector into two
parts: the turbulent phases and the voltages. The op-
eration that is actually needed at each step to compute
the new phase estimate is given by the first three compo-
nents of Eq. (31):

S ŵn12/n

ŵn11/n

ŵn/n

D 5 M1S ŵn11/n21

ŵn/n21

ŵn21/n21

D 1 M2~Yn
meas 2 M3 • un22!.

(41)

The new command is then deduced from Eq. (41):

un 5 M4ŵn11/n , (42)

where the size of u is the number of actuators, nact ; the
size of wn is the number of modes used to describe the tur-
bulent phase, nmod ; and the size of Yn is the number of
measurements of the WFS, nWFS .

On the one hand, for the integrator control law, we
need to keep in memory the matrix Mcom , whose size is
nact 3 nWFS . On the other hand, for the Kalman and
feedback control, we need to keep in memory the matrices
M1, whose size is 3nmod 3 3nmod; M2 , whose size is
3nmod 3 nWFS ; M3 , whose size is nWFS 3 nact ; M4 ,
whose size is nact 3 nmod , and the voltages at the current
instant and the previous instant un21 and un . It is also
possible to decrease the number of parameters to be kept
in memory with sparse matrix considerations. Obvi-
ously, the Kalman approach that we suggest still requires
us to record more variables than does an integrator ap-
proach.

Additionally, it must be noted that Hn must be com-
puted at each time step. A solution for dealing with this
problem is to use the limit of Hn when n tends toward in-
finity. This limit can be computed independently, and us-
ing it instead of Hn limits the performance of the system
only during the few first iterations. The major reason
that this ‘‘trick’’ is effective is that the Riccati equation
[see Eq. (32)] that must be solved to compute Hn con-
verges fast.19,36

2. Taking into Account the Static Aberrations
Up to now, we have considered that the phase to be cor-
rected was purely a Kolmogorov turbulent phase, evolv-
ing in time. In a real system, one must take into account
static aberrations, coming essentially from the optical
components. It is easy and instructive to examine how to
estimate and compensate these aberrations in the Kal-
man framework. One has only to add a constant phase
wcst to the turbulent phase wtur. The evolution, Eq. (23),
then becomes

wn11
tot 5 wn11

cst 1 wn11
tur , (43)

wn11
tur 5 F@ wn

tur , wn21
tur , wn22

tur ,...# 1 nn , (44)

wn11
cst 5 wn

cst . (45)

For a first-order evolution model, Eq. (24), the state vector
then becomes
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Xn 5 S wn11
cst

wn11
tur

wn
tot

wn21
tot

un21

un22

D .

The state model becomes

Xn11 5 3
Id 0 0 0 0 0

0 A 0 0 0 0

Id Id 0 0 0 0

0 0 Id 0 0 0

0 0 0 0 0 0

0 0 0 0 Id 0

4 Xn 1 3
0

0

0

0

Id

0

4 un

1 S 0
nn

0
0
0
0

D , (46)

Yn 5 D@0 0 0 Mb
L 0 2Mb

DMN#Xn 1 wn .
(47)

The equations of the Kalman filter [Eqs. (31)–(33)] can
then be applied with the new matrices A, B, C. Thus, by
introducing the static aberrations into the model in this
way, it is possible to estimate and compensate them with-
out difficulty.

5. SIMULATIONS, RESULTS, AND
INTERPRETATIONS
We have presented the theoretical development of an op-
timal control law based on a Kalman filter, and we have
explained why we think it is a promising approach for es-
timating the turbulent phase in closed loop. We now
quantify with numerical simulations the gain brought by
this new approach. The idea is first to illustrate the
method on the easy and well-understood classical AO
case. We then proceed to the more complex and challeng-
ing MCAO case. The simulation conditions are represen-
tative of typical astronomical observations on a 8-m-class
telescope in the near infrared.

We briefly describe in Subsection 5.A the prior models
and phase-generation models used in the simulation.
Then in Subsection 5.B we discuss the differences be-
tween a first-order-AR model and a Taylor model. The
classical AO simulations are presented in Subsection 5.C.
We compare the Kalman performance with those of the
OMGI in Subsection 5.C.2. We first consider a favorable
case where both the prior and the phase-generation mod-
els follow a first-order AR. We then verify that a Kalman
approach based on a simple first-order AR can still con-
serve its gain over the OMGI when phase generation is
based on more representative translating screens (Taylor
case). Finally (see Subsection 5.C.3), we artificially in-
troduce unseen modes in the classical AO simulation.
This tutorial case clearly demonstrates the Kalman ap-
proach’s ability to deal with unseen modes in MCAO.

Finally, we simulate the MCAO case in Subsection 5.D.
The performance of the Kalman approach is compared
with that of the OMGI generalized to MCAO. We dem-
onstrate the gain of the Kalman approach, particularly in
the FOV between the GSs.

A. Turbulence Models
First of all, one has to understand that there are two dif-
ferent types of turbulence models: on the one hand, the
phase-generation model, which is used to generate the
time series of the turbulent phase, and on the other hand,
the prior model, which is used to build the Kalman esti-
mator as described in Section 4.

In classical AO, the prior model used in all our simula-
tions is a first-order-AR turbulence model presented in
Eq. (24). For the phase-generation-model, we use succes-
sively two models. The first one is a first-order AR iden-
tical to the prior model. The second one is a so-called
Taylor model. In this case, we create three phase screens
by the McGlamery approach,37 and we shift them across
the pupil with the same wind speed (V/D 5 2 Hz) but
with different wind directions (0°, 120°, and 240°). We
use linear interpolations for translations of a decimal
number of pixels.

In MCAO, the prior model and the phase-generation
model are identical; they correspond to a first-order-AR
model on each layer, with a scaling factor accounting for
the turbulence profile Cn

2.
Note that in the OMGI there is also an underlying tem-

poral PSD model that is used to optimize the gains [see
Eq. (35)]. In all the simulations presented here, the PSD
model used for the OMGI is always derived from the
phase-generation model itself.

B. Autoregressive Model
We must now specify in more detail which first-order-AR
(AR1) model we used.

The matrix A in Eq. (24) has been chosen diagonal, and
its elements have been adjusted with respect to the char-
acteristics of the temporal evolution of the turbulence.

More precisely, we enforce a correlation time that de-
creases with the Zernike radial order. We based this
choice on the result, given in Ref. 31, that the cutoff fre-
quency fc of the PSD of a Taylor turbulent phase is pro-
portional to n 1 1, where n is the Zernike radial order.
The characteristic time of evolution of the turbulent
phase tc can be approximated by tc . 1/fc and is then
proportional to 1/(n 1 1).

The characteristic time of evolution of the AR-
generated turbulence is defined as the correlation time at
1/e. It can be written, for the radial order n, as tc

AR

5 21/log(an), where an is the coefficient of matrix A for
the radial order n and log is the Neperian logarithm.
tc

AR 5 tc then gives us the relative evolution of an where
n is representative of a turbulence evolution. This ap-
proach still leaves us one parameter to adjust, for ex-
ample, a1 .

The decorrelation of the first-order-AR turbulence is ex-
ponential, this corresponds to a PSD that is constant be-
fore a cutoff frequency fc

AR and then decreases with a f 22
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law. On the other hand, the Taylor PSD also exhibits a
cutoff frequency fc , but after fc , the decrease is much
sharper and follows a 217/3 power law.31,38,39 This
means the AR turbulence contains more energy at high
temporal frequencies. This difference of behavior be-
tween the AR and the Taylor models prompted us to de-
fine the concept of equivalent wind speed for the AR-
generated turbulence (see Subsection 5.C.1). One must
also note that the AR temporal behavior is related to the
model order. A higher order could provide a PSD closer
to that of a Taylor turbulence. On the other hand, it
would also increase the complexity of the filter and could
potentially decrease its stability and robustness.

In any case, we will verify in Subsection 5.C.2 that our
Kalman control based on a simple first-order-AR prior
model can be rather efficient even when operating on a
Taylor phase-generation model.

One could also wonder whether our simple first-
order-AR prior model truly allows us to perform an effi-
cient global optimization. Indeed, A is a diagonal matrix,
and Cw is quasi-diagonal in the Zernike basis. One must
realize, however, that, in general, the measurement equa-
tion is not diagonal in the Zernike basis. Despite the
simple prior model, the Kalman multivariable loop is
therefore far from being equivalent to independent scalar
loops. In other words, in the system eigenmode basis,
where unseen modes appear, the turbulence covariance
matrix is far from diagonal, which means that the eigen-
modes are correlated. Our simple prior is sufficient to
encode these spatial correlations and give some informa-
tion about the temporal behavior. The Kalman approach
uses all this to recover unseen modes, as will be shown in
Subsections 5.C.3 and 5.D. The only case in which the
Kalman control is probably close to decoupled scalar loops
is the case of Subsection 5.C.2, where, for the sake of sim-
plicity, the WFS is assumed to directly measure Zernike
coefficients.

Concerning the temporal prior, it could also be of inter-
est to build a turbulence model that really imposes the
Taylor frozen-flow hypothesis. A recent paper21 has pro-
posed a way to apply such a constraint. In this case both
the wind speed and the wind direction can be taken into
account. Less informative models, such as our AR de-
scription, are still of interest when the wind is not well
known or not well defined. That case succeeds when the
wave front is the sum of several Taylor contributions in
several layers characterized by different wind vectors.

C. Simulations in Classical Adaptive Optics

1. Simulation Conditions
We first describe the turbulence and system simulation
conditions. The turbulent phase is composed of the first
13 Zernike radial orders (Zernike polynomials 2–105).
D/r0 is set to 10 at the imaging wavelength. The delay of
the loop is two sampling periods (as already mentioned
and described in Fig. 3). The WFS directly measures the
Zernike polynomials 2–105, meaning that the matrix D is
assumed to be identity. The measurement noise is
Gaussian and representative of a 9 3 9-microlens
Shack–Hartmann WFS. So that the noise would be
equivalent to the noise propagation through the recon-
struction from Shack–Hartmann data, the noise was
colored40,41 with a variance proportional to (n 1 1)22.
The SNR was taken between 5 and 50. The SNR is de-
fined as the variance of the slopes on the equivalent SH
divided by the measurement noise variance. The sam-
pling frequency fsamp was taken as fsamp 5 50 Hz and
fsamp 5 100 Hz.

These simulation conditions are representative of near-
infrared observation on a 8-m telescope at a good astro-
nomical site. As an example, taking a zero point derived
from NAOS33 for a visible WFS operating at 0.7 mm and
considering an imaging wavelength of 2.2 mm, a WFS
SNR of 10 is representative of a GS magnitude 15 with a
sampling frequency of 100 Hz. Such a sampling fre-
quency is well adapted to such a GS magnitude to provide
a good correction. Using a higher frequency would lead
to an increased noise level, leading to a reduced loop gain
and to no improvement in terms of effective bandwidth.

The DM directly corrects the Zernike polynomials
2–105, which means that N 5 Id. In all the simulation
results presented in this paper, we have added the vari-
ance generated by the turbulent modes with radial order
larger than 13 to the residual variance obtained for the
corrected first 13 radial orders. This means that all the
variances are computed as42,43

sres
2 5 sres

2 ~n 5 1:nmax! 1 (
n5nmax11

`

sres
2 ~n !, (48)

. sres
2 ~n 5 1:nmax!

1 0.458~nmax 1 1 !~25/3!~D/r0!~5/3!, (49)

where n represents the radial order and nmax is the last
radial order simulated in the turbulent phase; here nmax
5 13. We still need to give an appropriate definition of
an equivalent wind speed. To do so, we simulated an in-
tegrator control law (fixed gains 0.5 on each mode) on the
classical AO system defined above with a sampling fre-
quency of 100 Hz and a SNR of 50. We estimate the re-
sidual variances for the case when this integrator is ap-
plied to a Taylor turbulence parameterized by the wind
speed V and to the AR turbulence parameterized by a1
defined in Subsection 5.A. We say that V is the equiva-
lent wind speed for a given a1 if the residual variances
are equal. For V/D 5 2 Hz and fsamp 5 100 Hz, we
found a1 5 0.99014.

2. Comparison of the Kalman Approach with the
Optimized Modal Gain Integrator
We mentioned that here D was the identity, which means
that the eigenmodes of the system are the Zernike poly-
nomials themselves. The gains are therefore optimized
on the Zernike polynomials. They are thresholded to 0.5
for stability reasons.

To compare the two approaches, we have defined the
factor r, which gives the enhancement factor of a Kalman
filter compared with the OMGI. If sres

2 (Kalman) and
sres

2 (OMGI) are the variances of the residual phases ob-
tained with the two methods, the enhancement factor is
defined as
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r 5
sres

2 ~OMGI! 2 sres
2 ~Kalman!

sres
2 ~OMGI!

. (50)

If sres
2 (Kalman) is 0, r is 100%. If it is equal to

sres
2 (OMGI), r is equal to 0%.
Figure 4 represents the evolution of r with the SNR for

these two sampling frequencies. For 100 Hz, the en-
hancement factor goes from 16% to 25%, and for 50 Hz it
goes from 20% to 31% when SNR increases.

In terms of absolute performance, the Strehl ratios,
given respectively for Kalman and the OMGI, are 28%
and 22% for 100 Hz and SNR 5 15 and 37% and 29% for
100 Hz and SNR 5 50.

It is easy to understand why the enhancement factor
increases when the sampling frequency decreases. The
lower the sampling frequency, the more the turbulent
phase changes between two measurements and the more
we need to make a good prediction. As already said in
Subsection 4.C, the Kalman approach provides a predic-
tion of the evolution of the turbulent phase, whereas the
OMGI approach does not; hence r increases when the
sampling frequency decreases.

Now, r increases with the SNR. Actually, if the SNR
tends toward zero, all estimators tend to be equivalent,
and if the SNR tends toward infinity, the phase estima-
tion is better and thus provides a better prediction.

Our results can be compared directly with those ob-
tained by Dessenne and co-workers with a modal tempo-
ral predictor,14,34 because we took similar simulation con-
ditions. The two results are very close. This is not
surprising, since it corresponds to two different ways of
implementing an efficient temporal prediction. The ad-
vantage of the Kalman approach is that it is easy to de-
rive and avoids the stability constraints that have to be
imposed in Dessenne’s approach. It is also more efficient
since the optimization is global rather than mode by
mode. Here, however, with our simplistic WFS model,
and as mentioned in Subsection 5.B, the global control is
probably almost equivalent to decoupled scalar loops.
With real-world WFS and DM models, the global ap-
proach provides an appropriate framework for dealing
with the usual waffle modes.

In a second step, as real systems have to compensate
multilayer Taylor turbulence, we wanted to apply a Kal-

Fig. 4. Enhancement factor of the Kalman filter r, in %, versus
SNR for two sampling frequencies, 50 Hz (solid curve) and 100
Hz (dashed curve).
man filter built on the first-order-AR prior model to a Tay-
lor turbulence and to quantify its performance. We al-
ready said in Subsection 5.A that in this case, we simulate
the turbulence as three layers translating with a constant
speed but in three different directions (0°, 120°, and 240°).
A summation of the three screens gives the turbulent
phase on the pupil. By projecting the resulting screen on
the Zernike basis, we obtain the WFS measurements.
One must keep in mind that we consider a sensor that di-
rectly measures the Zernike coefficients.

The previous simulations were then made again for two
cases: case (1), the Kalman filter and the OMGI applied
on the AR phase-generation model, and case (2), the Kal-
man filter and the OMGI applied on the Taylor phase-
generation model. The prior model used for the Kalman
approach is always the AR model, whereas, as mentioned
in Subsection 5.A, the OMGI PSD model is derived from
the phase-generation model itself. The simulations are
done under the conditions used for equivalent-wind-speed
estimation (n/D 5 2 Hz, fsamp 100 Hz, or a1 5 0.99014).

We have observed that the enhancement factor r is not
sensitive to the turbulence generator used; i.e., rAR
. rTaylor, where rAR and rTaylor are obtained from the
Kalman and the OMGI results of case (1) and case (2), re-
spectively. This means that, even if the first-order tur-
bulence model is not optimal, the Kalman filter induced
by this model does not lose its advantage over the OMGI.
This is a first argument to say that the Kalman filter is
robust to model errors. The interest of using the Kalman
approach is kept even if the evolution model is approxi-
mative. This is an important point, because it justifies a
posteriori the use of the first-order-AR turbulence model.
One should investigate whether a higher-order-AR model
could improve the Kalman performance.

3. MCAO-like Case, Introduction of Unseen Modes, and
Correction of These Modes
The gain given by the Kalman approach in Subsection
5.C.2 is essentially linked to its ability to make a good
temporal prediction. We now illustrate its ability to deal
with unseen modes.

In Subsection 5.C.2, the same 2–105 Zernike polynomi-
als were used to describe the turbulent phase, the mea-
sured phase, and the correction phase. As we said, this
means that the interaction matrix D between the turbu-
lent phase and the measured phase was the identity ma-
trix.

We now artificially introduce unseen modes in a classi-
cal AO case. To do so, we have chosen to use a matrix D
that mixes two polynomials. More precisely, we consider
here that the WFS cannot distinguish Z4 and Z17 and
that it measures only the average of the corresponding
Zernike coefficients.

If $zi% are the coefficients of the turbulent phase on the
Zernike basis, the measurement is then, apart from the
noise,

y4 5
z4 1 z17

2
, (51)

y17 5
z4 1 z17

2
, (52)

yi 5 zi for i Þ 4 and i Þ 17 (53)
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instead of yi 5 zi for all modes as previously. With this
matrix D we create one unseen mode: Z4 2 Z17 . We
chose those two modes because Z4 , a low-order mode, is
very energetic, while Z17 , a high-order mode, is less en-
ergetic. Estimating z4 and z17 correctly is a problem that
is then very similar to the MCAO unseen-mode problem
presented in Subsection 3.C.

In Fig. 5 we present the variance of the residual phase
mode by mode for the Kalman approach and for the
OMGI in the presence of the unseen mode. We show as a
reference the variances obtained in the case without the
unseen mode described in Subsection 5.C.2. In the refer-
ence case, the difference between the two methods is es-
sentially due to the prediction step included in the Kal-
man filter. This is a modal illustration of the results of
Subsection 5.C.2.

In the case with unseen modes, the OMGI simply filters
out the unseen modes and thus introduces a large estima-
tion error on both z4 and z17 . A first analytical estima-
tion of this error can be provided by an open-loop reason-
ing. The OMGI affects half of the measurement to each
mode because of the lack of prior information on the rela-
tive energy of modes 4 and 17. Thus it overestimates the
energy of z17 and underestimates the energy of z4 . This
gives the following expected residual variances:

sres,OMGI,z4

2 . sres,OMGI,z17

2 .
sturb,z4

2

4
1

sturb,z17

2

4

.
sturb,z4

2

4
. (54)

This is what is observed in Fig. 5. The variance of the
turbulent phase is also plotted for comparison. Note that
sres,OMGI,z17

2 is even larger than the turbulence variance.
The Kalman approach performs a global optimization

that makes use of the spatial priors to estimate these two
modes. The result corresponds to what was expected:

Fig. 5. Variance of the residual phase (in rad2) with unseen
modes for a Kalman estimator (dashed–dotted curve) or the
OMGI approach (solid curve) and without unseen modes with the
Kalman estimator (dotted curve) or the OMGI approach (dashed
curve). The turbulent-phase variance is also plotted for com-
parison (3’s). As the piston mode is not considered here, the x
axis begins with the tilt mode. x 5 1 stands for the tilt. The
values for Z4 and Z7 are underlined on the curves by adding the
symbols 1, n, * , and L.
the loss of performance is much smaller than in the
OMGI case. We obtain, for z4 , sres,OMGI,z4

2 5 0.3 rad2

and sres,Kalman,z4

2 5 0.06 rad2, and sturb,z4

2 5 1.1 rad2.
For z17 , sres,OMGI,z17

2 5 0.3 rad2 and sres,Kalman,z17

2

5 0.01 rad2 while sturb,z17

2 5 0.05 rad2.
In other words, it is the use of spatial correlations be-

tween the unseen modes, here Z4 2 Z17 , and the other
modes that allow the Kalman estimator to conserve good
performance.

This ability to deal with unseen modes will now be il-
lustrated on MCAO simulations. Note that it could also
be of interest in real classical AO systems, since unseen
modes, the so-called waffle modes, generally appear with
real-world WFS and DM characteristics. The Kalman
approach could then avoid the usual ad hoc filtering pro-
cedures used in this case. It can also provide a better re-
jection of these modes, which is important for high-
dynamic-range AO.

D. Simulations in Multiconjugate Adaptive Optics

1. Simulation Conditions
We first present the turbulence and system simulation
conditions. We consider a two-layer atmosphere. The
layer altitudes are 500 m and 10 km, and the strength of
the turbulence is 80% in the lower layer and 20% in the
higher one. The global D/r0 is set to 9. For an 8-m tele-
scope diameter, r0 5 0.89 m at 2.2 mm and u0 5 8.599 at
2.2 mm, which is representative of astronomical sites.

For the maximum spatial frequency to be the same on
the two layers, the number of Zernike radial orders in
each layer should be proportional to the size of the pupil
on the layer, the so called metapupil. The size of the
metapupil is determined by the projections, on the layer,
of the telescope pupil in the whole FOV (2 arc min). The
metapupil diameters are then respectively 8.3 m and 13.8
m at 500 m and 10 km. We chose a factor 2 between the
number of radial orders on the lower and on the higher
layers. We then created a turbulent phase composed of
13 radial orders in the first layer and 26 in the second
one. The phase is generated layer by layer with an AR
process in the same way as in classical AO. The param-
eters a1

500 m and a1
10 km are both equal to 0.99104.

The results presented here correspond to an 8-m-class
telescope observing in the near infrared (2.2 mm). For
the wave-front sensing we use three GSs located on the
vertices of an equilateral triangle inscribed in a FOV of 2
arc min, as shown in Fig. 6. The SNR on Shack–
Hartmann measurements41 is equal to 10.

The sampling frequency is 100 Hz, and the delay of the
loop is two sampling periods. The WFS can measure 13
radial orders of Zernike polynomials, and the noise on the
measurements is representative of a 12 3 12-microlens
Shack–Hartmann WFS. We use two DMs conjugated at
500 m and 10 km, that is, conjugated on the turbulent
layers themselves, mirrors that can correct 13 radial or-
ders for the lower layer and 26 radial orders of Zernike
polynomials for the higher layer. The choice of the factor
2 between the number of corrected radial orders on the
lower and the higher layers is motivated by the same rea-
sons as previously for the turbulent phase. (Since the
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DMs are located at the same altitudes as the turbulent
layers, the metapupils sizes are also identical.)

We compute the variances of the residual phase in dif-
ferent directions. In this computation, we take into ac-
count the Noll residual variance through Eq. (49) with
nmax 5 13.

We also present the Strehl ratio, which is approximated
as the coherent energy exp(2sres

2 ). This is a good ap-
proximation for good corrections.

2. Results and Interpretations
We compared the Kalman filter performance in the
MCAO case with a new approach, the Multiconjugate
OMGI (MOMGI), which is a generalization of the MCAO
of the OMGI approach in classical AO.12,13 The gains of
the MOMGI are optimized (as explained in Subsection
5.C.2) on the basis of the eigenmodes of
@DMb

DMN#T@DMb
DMN#. As in Subsection 5.C.2, the gains

of the MOMGI estimator have been thresholded to 0.5 for
stability reasons.14 We recall that Mb

L is the matrix that
performs the summation on the turbulent layers in all di-
rections b. In this basis, the modes whose eigenvalues
are low are badly seen, and the modes whose eigenvalues
are 0 are unseen. The lower the eigenvalue, the lower
the gain on this mode. The optimized gains in this basis
are plotted in Fig. 7. One must note that the number of
lines of matrix DMb

DMN is the total number of measured
modes 3 3 104 5 312 modes (3 GSs, 104 Zernikes per

Fig. 6. Illustration of the GSs geometry and of the directions for
which the performance is estimated.

Fig. 7. Optimized model gains in the MCAO case, in the basis of
the eigenmodes of @DMb

DMN#T@DMb
DMN#. Note that the effective

x-axis range is the number of eigenmodes, 482 in this case.
GS, 13 radial orders without the piston mode). The num-
ber of columns is the total number of corrected modes,
104 1 378 5 482 modes (104 Zernikes for the first DM,
378 for the second one, corresponding to 15 radial orders).
Matrix DMb

DMN is then 312 3 482. This means that the
matrix @DMb

DMN#T@DMb
DMN# is 482 3 482. There are

then 482 eigenmodes and eigenvalues, but the rank of
@DMb

DMN#T@DMb
DMN# is at most 312, which means there

are at least 482 2 312 5 170 zeros in the eigenvalues.
This is the reason why there are so many zeros in the
gains observed in Fig. 7.

As we can see, the number of unseen modes in MCAO
can be large; the number is, in fact, a complex function of
the GS number and geometry and of the FOV of interest.
In our case, with three GSs, we observe that there are
many unseen modes. In classical AO, unseen modes are
less of an issue since the systems are usually designed so
that the number of correction modes is directly related to
the number of measured modes.

As the gains decrease with the eigenvalues, the unseen
modes are filtered out by the MOMGI approach, while the
Kalman filter estimates them by using spatial a priori
knowledge. As we know from previous studies,6 the es-
timation of unseen modes can be critical for the perfor-
mance of the system in the FOV between the GSs. We
then expect a significant gain for the Kalman approach.

Figure 8 shows the Strehl ratio along a line joining the
center of the GS triangle and one of the GSs (as shown in
Fig. 6) for the two approaches and for the classical AO
OMGI case. The difference of performance observed in
the GS direction between the Kalman approach and the
others is due to the temporal error. The Kalman ap-
proach that we propose provides a prediction. For each
case the best performance is obtained on the GS and de-
grades away from it. Our approach provides a noticeable
improvement over the MOMGI and a better interpolation
between the GSs. The difference between the two corre-
sponds to a few percent of Strehl ratio on the GS and 10%
on the border of the FOV.

In Figs. 9 and 10 we present the variance of the re-
sidual phase on the pupil versus the Zernike mode in two
directions: the GS direction and the center of the FOV.

Fig. 8. Comparison between the Kalman approach (solid curve),
the MOMGI approach (dashed–dotted curve), and the classical
AO case (dotted curve). The Strehl ratio (in %) is plotted versus
the position in the FOV in arc seconds.
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The deterioration of the integrator performance at the
center of the FOV is obvious and is due to the presence of
unseen or badly seen modes.

It must be noted that we also performed the same
MCAO simulation with a slightly irregular GS geometry
(distance of the GSs from the center of the FOV equal to
509, 609, 709 instead of 609, 609, 609). The gain given
by the Kalman approach is conserved even with such a
geometry. Nevertheless, if the geometry is irregular and
the number of GSs is large, unseen modes may be less
numerous.27

E. Discussion: Interest of the Kalman Filter
It has been shown in the previous sections that a Kalman
filter provides a significant benefit in the performance of
an AO or a MCAO system. In this subsection we stress
many practical advantages.

First of all, the state-space approach provides a rigor-
ous framework for the use of spatial and temporal priors
that are necessary for dealing with unseen modes, and

Fig. 9. Residual phase variance (in rad2) as a function of the
Zernike mode for the Kalman approach (dashed–dotted curve)
and the MOMGI approach (solid curve) on a GS. As the piston
mode is not considered here, the x axis begins with the tilt. x
5 1 stands for the tilt.

Fig. 10. Residual phase variance (in rad2) as a function of the
Zernike mode for the Kalman approach (dashed–dotted curve)
and the MOMGI approach (solid curve) at the center of the FOV.
As the piston mode is not considered here, the x axis begins with
the tilt. x 5 1 stands for the tilt.
the Kalman filter provides a fully optimal estimation with
separation between estimation and control.

Second, the question of the stability of the control,
which was constraining the control laws previously
proposed,12–14 can be avoided when the model used in the
Kalman filtering is relevant and stable itself.19 It has
been explained that the Kalman approach uses a physical
description of the system through the state equations,
Eqs. (28) and (29). Any kind of control implicitly uses a
model for turbulence evolution and measurement. In the
approach proposed, we explicitly write this model. This
allows us to make physical interpretations of the control
law and to understand physically the behavior of the con-
trol.

It then becomes easy to introduce into the system
model any pertinent parameter or behavior. We have
shown this for the problem of static aberrations. To take
these aberrations into account, we need only adapt the
model equations, which does not change the structure of
the control. In the same way, various phenomena that
generally limit AO performance can be introduced into
the model so that they can be taken into account. For in-
stance, aliasing, vibrations of the telescope, or miscalibra-
tions can be handled efficiently by introducing them into
the state equations, Eqs. (28) and (29).

We have already suggested in this paper that it is not
necessary to obtain a very precise knowledge about the
priors used in the Kalman filter (Subsection 5.C.2). This
is a classical issue of regularized estimation, and we have
already observed in Ref. 44 that pricision of spatial-prior-
knowledge is not critical in open-loop MCAO.

We therefore used a temporal turbulence model that
does not require us to know the wind direction in each
layer, which would be in practice quite difficult to obtain.
Imposing the PSD on each mode is informative enough
and gives, as we saw in this paper, very good results.

6. CONCLUSION
We have presented an optimal closed-loop control law for
multiconjugate adaptive optics (MCAO). MCAO control
has to deal with a larger number of degrees of freedom
than classical AO and needs a more complex process for
estimating the turbulent phase. The solution that we
propose is a global approach, as opposed to the previous
modal approaches, that is based on a linear state-space
model with a Kalman estimator. This approach gives an
optimal estimation of the turbulence in closed loop. It in-
corporates both spatial and temporal information on the
turbulent phase, as well as information on the system
noise statistics, through the so-called state-space model.
The temporal priors allow us to make good predictions of
turbulence evolution, and the spatial priors allows us to
deal with the unseen modes. Furthermore, this ap-
proach is flexible enough to allow us to easily take into ac-
count various physical parameters or phenomena.

We have shown through a numerical simulation that
this approach gives much better results than the usual
techniques. The performance has been quantified in
classical AO and MCAO and compared with the perfor-
mance of the optimized modal gain integrator approach.



Le Roux et al. Vol. 21, No. 7 /July 2004 /J. Opt. Soc. Am. A 1275
The major gain comes from the prediction in classical AO
and from the estimation of unseen modes in MCAO.

To our knowledge, this is the first time that a Kalman-
based approach has been proposed for MCAO. The ap-
proach would allow us to optimize future MCAO systems,
such as MAD45–47 or FALCON48,49 projects, and to relax
technical constraints on those projects. This approach
should also be quite promising for very-high-Strehl-ratio
AO systems, since it has the potential to handle efficiently
various effects that generally limit classical AO
performance.50–52

Corresponding author Brice Le Roux may be reached
by e-mail at leroux@arcetri.astro.it.
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