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ABSTRACT

The direct imaging of planets around nearby stars is exceedingly difficult. Only about 14 exoplanets have been
imaged to date that have masses less than 13 times that of Jupiter. The next generation of planet-finding
coronagraphs, including VLT-SPHERE, the Gemini Planet Imager, Palomar P1640, and Subaru HiCIAO have
predicted contrast performance of roughly a thousand times less than would be needed to detect Earth-like
planets. In this paper we review the state of the art in exoplanet imaging, most notably the method of Locally
Optimized Combination of Images (LOCI), and we investigate the potential of improving the detectability of
faint exoplanets through the use of advanced statistical methods based on the concepts of the ideal observer
and the Hotelling observer. We propose a formal comparison of techniques using a blind data challenge with an
evaluation of performance using the Receiver Operating Characteristic (ROC) and Localization ROC (LROC)
curves. We place particular emphasis on the understanding and modeling of realistic sources of measurement
noise in ground-based AO-corrected coronagraphs. The work reported in this paper is the result of interactions
between the co-authors during a week-long workshop on exoplanet imaging that was held in Squaw Valley,
California, in March of 2012.
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1. INTRODUCTION

Several of the co-authors of this paper took part in the conference Seeing the Future with Imaging Science,
organized by the US National Academies Keck Futures Initiative (NAKFI). The format of that workshop was
to bring together scientists and engineers from diverse backgrounds, including radiologists, astronomers, and
physicists, to see if they could learn from each other’s experience and envisage new approaches to problems of
detection and characterization in imaging. One of the study groups at the workshop discussed possible new
approaches to exoplanet imaging, and in particular adapting methods used in medical imaging to the post-
processing of extreme adaptive-optics corrected coronagraphic images. Of particular interest was the concept
of the ideal observer and the Hotelling observer1–5 and how these approaches might be applied to exoplanet
detection. Although these methods have been examined previously, to the authors’ knowledge they have not yet
been applied to real astronomical data.

Through a seed grant from the Keck Foundation, a follow-on workshop was organized to bring together
experienced astronomers as well as experts in imaging theory. Of particular interest was to formally assess and
compare the performance of techniques based on the Hotelling observer with the state of the art, represented
by angular or spectral differential imaging using the Locally Optimized Combination of Images (LOCI) and its
variations.6–9 It was hoped that in so doing we might enable the detection of exoplanets at least an order of
magnitude fainter than what is currently possible.

Direct imaging of a planet around another star is exceedingly challenging. For even the closest stars observed
with the largest ground-based telescopes, the angular separation between star and planet will be near the classical
diffraction limit. Moreover, a typical star will be about a billion times brighter than the planet to be imaged.
The planetary image is also buried in “speckle noise,” which is the result of uncorrected wavefront errors that
propagate through the atmosphere and optical system. This speckle noise has a complex spatio-temporal-spectral
structure, which is different from a planetary signal. While algorithms now exist that exploit some properties
of the signal and noise, there has been little effort to address the full problem in a rigorous and comprehensive
way. The aim of our work is to begin to address this need.

For this effort, a balance was sought between theorists and astronomers, and invitations were extended to
and accepted by participants representing all the major near-term ground-based coronagraph projects, namely
P1640,10 the Gemini Planet Imager11 (GPI), the SPHERE instrument of the Very Large Telescope, and the
Subaru SCExAO project.

Our exoplanet imaging workshop took place at Squaw Valley, CA, during the week of 25-30 March 2012.
Each day of the workshop two different broad topics related to imaging were discussed as the subject of possible
future research. These included the topics of detection, astrometry, spectroscopy, future instrumentation, lessons
learned, and an optimal observing campaign design. The sessions were run on the same model as the NAKFI
sessions. The participants were split into two groups and each group decided what question they would tackle,
and each reported separately at the end of each session. This way, the most compelling research topics were
brought to the fore and several collaborations were formed for future work and study. An informal count of the
proposed work suggests that approximately a half-dozen possible future publications will be written as a direct
result of the workshop. Further details of the workshop are described in the review paper by Mawet et al.12

The participants readily agreed to undertake an exoplanet imaging challenge, for which simulated blind data
sets would be prepared and distributed for the testing of new algorithms. This was seen as a longer-term project,
extending beyond the workshop, that would form the basis for a future publication. It was also agreed to provide
a preliminary report on the imaging study at this SPIE Conference, as described in the following sections.

2. CURRENT PRACTICE

Figure 1 summarizes the current state of the art in coronagraphic imaging and data post-processing. Shown in
the figure are the 5-σ contrast limits versus apparent angular separation for observations of 1 hour after post-
processing of data and using various coronagraphs. The current generation of instruments is represented by 1)
the NIRC2 instrument on the Keck II telescope, 2) the Palomar Well-Corrected Subaperture (WCS), and 3) the
NACO instrument at the European Southern Observatory’s Very Large Telescope (VLT), which have been used
for example to detect the planets around HR 879913–15 and the planet around β Pictoris,16,17 whose K-band delta
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Figure 1:
The 5-σ contrast limits after post-processing of 1 hour’s worth of data for various coronagraph instruments. As
can be seen in the plot, there are roughly three groupings of curves: 1) the current state of the art represented by
Keck NIRC2, the Palomar Well-Corrected Subaperture, and VLT-NACO; 2) the next generation of instruments,
represented by P1640, GPI, and VLTI-SPHERE; and 3) future extremely large telescopes, represented by TMT
PFI and E-ELT EPICS. The contrast curves for JWST NIRCam and HST/ACS are shown for reference. On
the top right of the figure are plotted the K-band contrasts of 9 of the approximately 14 exoplanets imaged to
date. In the lower part of the figure are plotted our solar system planets as they would appear in reflected light
around a Sun-like star at a distance of 10 pc. On the left-hand of the plot is shown the corresponding RMS
wavefront error for a coronagraph using a 64 × 64 element deformable mirror. The shaded regions represent
where 1) Earth-like and 2) Jupiter- and Saturn-like planets would be detectable around the nearest stars.

magnitudes are also shown in the figure.18 The upcoming generation of instruments, coming online in 2012–2013
is represented by the curves for 1) Project 1640, 2) VLT-SPHERE, and 3) the Gemini Planet Imager (GPI).
Possible future instruments on telescopes larger than 10-m are represented by the curve for the Thirty Meter
Telescope’s Planet Finding Instrument, and the European Extremely Large Telescope’s EPICS instrument. The
data for these curves were obtained from the literature and the individual authors themselves and rescaled for
5-σ and 1 hour observations. (The sources for the curves are further detailed in the acknowledgments of this
paper.) Also shown in the figure are data for solar system planets, as they would appear in reflected light around
a Sun-like star at a distance of 10 pc. We would hope through the work discussed here to extend the performance



limits of all these instruments.

3. STATISTICAL DECISION THEORY FOR DETECTION AND
CHARACTERIZATION OF EXOPLANETS

3.1 Tasks, observers and ROC curves

The tasks of interest in exoplanet studies include:

• Pure detection: Is there a planet present?

• Astrometry: Where is the planet located?

• Photometry: How bright is the planet?

• Estimation of orbital parameters: Is it really a planet and not a background star?

• Spectrometry: What are the spectral characteristics of the light from the planet?

• Detection of life: Does the spectrum contain components consistent with living organisms?

Performance on a pure detection task is quantified by the Receiver Operating Characteristic (ROC) curve,
illustrated in Fig. 2. A common figure of merit for a detection task is the area under the ROC curve, denoted
AUC, which ranges from 0.5 for an imaging system that gives no information at all about the presence of the
signal, to 1.0 for a system that permits perfect detection. AUC is a figure of merit not only for the system that
acquires the image data but also for the observer (human or algorithm) that makes a decision on the basis of
the data.
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Figure 2:
Illustration of an ROC curve, which is a plot of probability of detection (also known as true-positive fraction) vs.
probability of a false alarm (false-positive fraction). Points along the curve are generated by choosing different
decision thresholds. Point A, for example, corresponds to a strict threshold which yields a low probability of
detection but also a low false-positive fraction. Points B and C correspond to less strict thresholds.

For a combined detection-localization task, the results may be depicted by a localization-ROC (LROC), which
is a plot of probability of detection of a signal and correct localization (within some tolerance) vs. probability of
a false alarm (false-positive fraction) as shown in Fig. 3.



Both the ROC and LROC curves assume either zero or one signal per image, but the theory can be generalized
to allow an arbirtary (but random and unknown) number of signals per image by means of the free-response
ROC (FROC) curve, which is a plot of the probability of detection and correct localization vs. number of false
positives per image.

A further generalization that encompasses the detection-estimation tasks enumerated above is the estimation-
ROC (EROC19), which is a plot of expected utility of a correct detection vs. false-positive fraction.
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Figure 3:
Illustration of an LROC curve, Points along the curve are again generated by choosing different decision thresh-
olds, and the location is then estimated for all candidate signals that exceed the threshold.

Whichever task and ROC is chosen, it is interesting to determine the observer that maximizes the task
performance. For a pure detection task, the ideal observer is defined as one that maximizes the AUC, or
equivalently maximizes the probability of detection for any specified false-alarm rate. Similar ideal observers
have been derived for LROC and EROC curves.

All of these ideal observers require knowledge of a huge multivariate probability density function of the image
data, which is usually impossible to calculate. A more practical alternative, in many problems in imaging, is the
Hotelling observer, which performs only linear operations on the image data. The simple Hotelling observer is
optimal among all linear observers for the pure detection task, in the sense of maximizing a certain detectability
index derived from the ROC curve. The scanning Hotelling observer is similarly optimal for the localization-
detection task. Both these observers are in fact completely optimal for their respective tasks, in an AUC sense,
if the data statistics are multivariate normal.20

To construct and implement the Hotelling and scanning Hotelling observers, we need to determine the en-
semble means of the image data and the data covariance matrices for both signal-present and signal-absent
hypotheses. The basic principles leading to these statistical characterizations are summarized briefly below, and
a more complete treatment will be published separately.

3.2 Data statistics

The analysis in this subsection follows Barrett et al.2 except that it is extended to include quasistatic speckle.

The image data is denoted abstractly as G, which indicates some sequence of two-dimensional (2D) image
frames indexed by time and wavelength. A collection of frames for multiple wavelengths at one tme is known as
a data cube, and the set of all data cubes will be referred to as the data set, or simply the data.

The data set is a random vector, and we consider here four separate random effects that influence the statistics
of G:



• Residual atmospheric speckle, caused by noise in the wavefront sensor and null functions in the deformable
mirror. These random effects are denoted Ratm.

• Quasistatic speckle, caused by random phase aberrations and log-amplitude perturbations in various optical
elements outside the common path defined by the control loop for atmospheric corretion. These effects are
denoted collectively as Rqs.

• Noise in the science camera, Nsci.

• Randomness in the object F being viewed (e.g., diffuse sky background, atmospheric absorption, back-
ground galaxies).

We consider two hypotheses. The null hypothesis H0 is that there is no planet present in the scene, and the
alternative hypothesis H1 is that there is a planet. For localization or estimation tasks, H1 can be a composite
hypothesis, H1(θ), where θ is a parameter denoting planet location, brightness or other quantities of interest.

The overall mean of the data set G under hypothesis Hj is denoted by

GHj
≡

〈

G
〉

G|Hj
, (1)

where the angle brackets indicate ensemble averages over the four sources of randomness identified above. Ex-
plicitly, the overall mean of the data set G under hypothesis Hj (j = 0, 1) is given by

GHj
=

〈〈〈〈

G
〉

Nsci|Rqs,Ratm,F

〉

Rqs|Ratm,F

〉

Ratm|F

〉

F|Hj
. (2)

It is useful to define three partial averages as follows:

G(Rqs, Ratm, F) ≡
〈

G
〉

Nsci|Rqs,Ratm,F
; (3)

G(Ratm, F) ≡
〈

G(Rqs, Ratm, F)
〉

Rqs|Ratm,F
; (4)

G(F) ≡
〈

G(Ratm, F)
〉

Ratm|F
. (5)

All of the averages defined in (2) – (5) are vectors of the same dimensionality as the data vector G and all are
indexed by spatial position and wavelength in each data cube and the time of acquisition of that cube. All of
the averages are over an ensemble of exposures, not over time or space.

The subscript Hj is not needed on any of the partial averages in (3) – (5) because they are conditional on
the astronomical object being imaged, F; when we specify F we do not need to further specify the class from
which it was drawn.

Note that the partial averages are always performed in a particular sequence, starting from the science camera
and working backwards through the telescope. The lowest overbar indicates an average over noise in the science
camera, the second lowest indicates an average over random effects that pertain to the quasistatic speckle, and
the third is over effects that pertain to atmospheric speckle. The fourth and final overbar, as in (2), denotes an
average over all objects in a class described by hypothesis Hj . Henceforth we will omit the arguments on these

partial averages, for example, writing G instead of G(Ratm, F).

The overall covariance matrix of the random vector G under hypothesis Hj is defined in outer-product form
as

KG|Hj
≡

〈

[

G − GHj

] [

G − GHj

]t
〉

G|Hj

, (6)

where the superscript t denotes a vector transpose. To see the precise meaning of this transpose, it is useful to
define a vector index m ≡ (mx,my,mt,mλ), where the four components are integer indices specifying x and y



pixel locations, frame time and wavelength, respectively. Then a single component of G is denoted either Gm

or as [G]m. The overall dimension of G is denoted M . The covariance matrix carries two of these vector indices
and is written, [KG|Hj

]mm′ . Explicitly,

[KG|Hj
]mm′ =

〈

[

G − GHj

]

m

[

G − GHj

]

m′

〉

G|Hj

. (7)

Thus G can be manipulated as a column vector, even though it has four indices, and Gt is the corresponding
row vector.

By a simple mathematical tautology, (6) can be written as

KG|Hj
≡

〈

[

G − G + G − G + G − G + G − GHj

] [

G − G + G − G + G − G + G − GHj

]t
〉

G|Hj

. (8)

Remarkably, when we write out this outer product and perform the averages, all cross terms vanish identi-
cally,2 without any assumptions of statistical independence, and we find

KG|Hj
=

〈

[

G − G
] [

G − G
]t

〉

G|Hj

+

〈

[

G − G
] [

G − G
]t

〉

G|Hj

+

〈

[

G − G

] [

G − G

]t
〉

G|Hj

+

〈

[

G − GHj

] [

G − GHj

]t
〉

G|Hj

. (9)

Now we are in a position to rewrite the overall covariance matrix as

KG|Hj
= K

sci

G|Hj
+ K

qs

G|Hj
+ K

atm

G|Hj
+ Kobj

G|Hj

, (12)

where

K
sci

G|Hj
=

〈〈〈〈

[

G − G
] [

G − G
]t

〉

Nsci|Rqs,Ratm,F

〉

Rqs|Ratm,F

〉

Ratm|F

〉

F|Hj

, (13)

K
qs

G|Hj
=

〈〈〈

[

G − G
] [

G − G
]t

〉

Rqs|Ratm,F

〉

Ratm|F

〉

F|Hj

, (14)

K
atm

G|Hj
=

〈〈

[

G − G

] [

G − G

]t
〉

Ratm|F

〉

F|Hj

, (15)

Kobj

G|Hj

=

〈

[

G − G

] [

G − G

]t
〉

F|Hj

. (16)

To understand the notational conventions here, we note that the innermost expectation in (13) is the covariance
matrix of the science-camera noise, Nsci, conditional on Rqs, Ratm and F. The three outer expectations then
correspond to averaging the covariance on Nsci over the three remaining sources of randomness, hence the three
overbars. Similarly, the innermost expectation in (14) is the covariance matrix of G, conditional on Ratm and
F, so we use G as the subscript on the covariance matrix and add two overbars.

The number of overbars on the subscript of the covariance matrix plus the number on the covariance matrix
itself always equals three, and a covariance matrix is also an average, so each of the four expressions in (13)
– (16) involves four averages. The differences are in how many averages are applied to G before forming the
covariance matrix and how many to the covariance matrix itself.

We emphasize that these results are exact and require no assumptions of statistical independence except
those dictated by the position of the random effect along the optical chain (e.g., the science camera does not
influence the atmospheric wavefront sensor or the astronomical object).



3.3 Structure of ideal and Hotelling observers

The exoplanet problem is all about detecting very weak objects and measuring their parameters. One well-
justified approximation is to say that the planets, if present, are so faint that they have no measurable effect on
any of the terms in the covariance expansion. This does not mean that they are undetectable, but rather that
the effect of a planet is to change the mean signal rather than the covariance.

For a pure detection task and multivariate Gaussian statistics, the ideal observer uses a discriminant function
(logarithm of the likelihood ratio) of the form

tideal(G) = − 1
2

[

G − GH1

]t

K−1

G|H1

[

G − GH1

]

+ 1
2

[

G − GH0

]t

K−1

G|H0

[

G − GH0

]

, (17)

The weak-signal approximation is to say that KG|H1
≈ KG|H0

≡ KG and also to neglect terms quadratic in the
difference in the means. The result is

tHot(G) =

[

GH1
− GH0

]t

K−1
G

[

G − GH0

]

. (18)

If the task is to detect the planet and measure a set of parameters θ, GH1
must be replaced by GH1|θ in (18) to

get the weak-signal approximation.

To interpret (18), recall that G can be treated as a high-dimensional column vector, so an expression of the
form WtG, where W is another column vector the same size as G, indicates a scalar product. The Hotelling

test statistic tHot(G) is thus formed by first subtracting the mean vector GH0
, then taking a scalar product with

a template given by

WHot = K−1
G

[

GH1
− GH0

]t

. (19)

For the scanning Hotelling observer, this template depends on θ, even in the weak-signal approximation.

A useful alternative interpretation of (18) is obtained by recognizing that the covariance matrix is symmetric
and positive definite (more on this point below), so we can define the square root of the inverse of the covariance
matrix and write

tHot(G) =

[

K
−1/2

G

(

GH1
− GH0

)]t [

K
−1/2

G

(

G − GH0

)]

. (20)

When it acts on a data vector G, the operator K
−1/2

G
converts whatever noise is present in G into uncorrelated

noise of unit variance. In electrical engineering parlance, stationary uncorrelated noise is called white noise, so by

analogy K
−1/2

G
is called a prewhitening operator. The second factor in square brackets in (20) is the prewhitened

data vector, with zero mean and a covariance matrix given by the unit matrix I in data space. Similarly, the first
factor is the prewhitened mean difference signal. Thus the Hotelling test statistic can be formed by subtracting
the mean background, prewhitening the the data vector and then taking a scalar product with the prewhitened
difference signal. For a scanning Hotelling observer, the prewhitening of the data needs to be performed only
once.

3.4 Computational methods

The major problem in applying the Hotelling formalism in imaging is that the covariance matrix is enormous.
For the challenge data described below, each data set consists of 120 data cubes, each of which consists of 277
× 277 spatial pixels for each of 5 wavelengths. Thus G has approximately 4.6× 107 elements, and its covariance
matrix is (4.6 × 107) × (4.6 × 107), for a total of 2.1 × 1015 elements. It appears quite impossible even to create
and store such a matrix, much less to find its inverse or inverse square root.

The key to tractable Hotelling algorithms is the covariance decomposition of (12), which we can rewrite here
as

KG = Kn
G + Knf

G
, (21)



where superscript n indicates noise (specifically, this term describes the noise from the science camera), nf
indicates noise-free and

Kn
G ≡ K

sci

G ; (22)

Knf
G

≡ K
qs

G + K
atm

G
+ Kobj

G

. (23)

The advantage of (21) is that Kn
G

can often be considered to be known and full rank, while (23) often has to be
estimated from a set of training samples. In simulation, the noise-free training samples are readily obtained just
by omitting the noise in the science camera, and we can write

KG ≈ Kn
G + K̂nf

G
, (24)

where the hat indicates a sample covariance matrix.

With real data, we can get a good estimate of Knf
G

by forming the overall sample covariance matrix and
filtering out the diagonal or near-diagonal terms that arise from noise in the science camera.

If we have obtained a set of Ns noise-free training images either by simulating them without science-camera
noise or by stripping off the noise contribution to the sample covariance matrix, and we denote the kth such
image as Gk, then we can form the M × Ns matrix R given by

R =
1√

Ns − 1

[

δG1, δG2, ..., δGNs

]

, (25)

where

δGk ≡ Gk − 1

Ns

Ns
∑

j=1

Gj . (26)

Thus each column of R is 1/
√

Ns − 1 times a sample image minus the arithmetic average of all of the sample
images.

With these definitions,
K̂nf

G
= RRt , (27)

and (24) becomes
KG ≈ Kn

G + RRt . (28)

The Woodbury Matrix inversion lemma allows us to write

[

Kn
G + RRt

]−1
= [Kn

G]
−1 − [Kn

G]
−1

R
{

I + Rt [Kn
G]

−1
R

}−1

Rt [Kn
G]

−1
. (29)

Thus

tHot(G)≈
[

∆G

]t

[Kn
G]

−1

[

G − GH0

]

−
[

∆G

]t

[Kn
G]

−1
R

{

I+Rt [Kn
G]

−1
R

}−1

Rt [Kn
G]

−1

[

G − GH0

]

. (30)

The advantage of this form is that I + Rt [Kn
G

]
−1

R is an Ns × Ns matrix, readily inverted numerically for Ns

up to 104 or so. The matrix Kn
G

is still huge, but it is full rank and usually diagonal.

The requisite Ns × Ns inverse can be performed by singular-value decomposition, and this same formalism
allows easy construction of the prewhitening operator. Details will be published separately.



4. EXOPLANET IMAGING CHALLENGE DATA

4.1 Description of Simulated Images

Much of the early discussion amongst the participants centered around the organization of an exoplanet imaging
challenge that would allow a fair comparison of the performance of different algorithms, specifically including
LOCI and methods using the Hotelling observer. The data sets were prepared by Lisa Poyneer with the help of
Marshall Perrin and Jérôme Maire. This section is Lisa’s overview of the data sets. The data themselves can be
downloaded at http://olbin.jpl.nasa.gov/nakfi/.

The challenge data were produced using a suite of simulation tools developed for the Gemini Planet Imager
(GPI) project. However, the data do not represent a prediction of actual GPI performance, and should not be
used to draw conclusions about GPI observational quality.

The goal for this data challenge is to provide a large data set containing many (but not all) important error
sources in a way that will allow testing and comparison of alternate planet finding algorithms. For this initial
challenge set the group decided to consider bright stars (so as to not be photon-limited), to observe with field
rotation (so that ADI could be used) and to have typical atmosphere and quasi-static speckles, though with
quasi-static speckles due only to phase errors, not amplitude errors. These quasi-static errors were generated to
be correlated with pointing, so that a phenomenon that may occur in a real system (correlation of quasi-static
errors across different observations) could be explored.

Finally, GPI simulation tools were used to directly produce a noisy Integral Field Spectrograph (IFS) dat-
acube, as opposed to dispersing the image onto a detector and then re-assembling a datacube via a wavelength
solution.21 This provides a simpler first case where the noise in the data is white; in a later data challenge we
could address colored noise due to the dispersion and reassembly. In the following paragraphs we provide more
description and explanation of various aspects.

The data challenge scenario contains 100 unique observations, drawn from a simulated GPI observing cam-
paign. The GPI campaign scheduler (Savransky, in preparation) was used with a fake star catalog to produce
observation parameters (ra, dec, ha) for each target as observed from Cerro Pachon. For this data set we wanted
to limit photon noise so all targets are post-facto assigned a stellar magnitude of 5 (bright), even though most
were fainter. Each star retains a specific stellar spectral type.

Along with a star and observation parameters, the campaign scheduler software also produces a random
assortment of planets around that star, drawn from our models for planet mass, orbit, etc. Some stars have no
planets, some have several. Each planet is given a specific angular separation, position angle in the field of view,
and brightness. All planets are assumed to have the spectral type L8. In order to probe contrasts from 10−4.5

to 10−6.5, the true planet magnitudes are made brighter by 2 to adjust to the artificially bright stars.

A modified version of the GPI Adaptive Optics (AO) simulator22 was used to produce the instrument Point
Spread Function (PSF) at five wavelengths sampled in H-band. This simulator was coupled with a vastly
simplified model of the GPI calibration system23 and instrument optical design to provide quasi-static errors.
The GPI AO simulator handles both common-path phase aberrations (usually atmospheric, which the AO system
can correct) and non-common-path (NCP) aberrations (which the AO system does not correct, but which should
be seen by the Calibration system).

Before the simulation begins, the observation pointing is used to produce a unique time-varying set of NCP
errors which produce quasi-static speckle. It is far beyond the scope of this effort to completely and time-
efficiently model all of the optics in GPI, their phase and amplitude variations,24 the gravity-induced shearing
that produces NCP errors, and the Calibration system’s measurement and correction. Instead, we used a simple
model that, while not capturing the true behavior of the system, does provide reasonable levels of NCP phase
errors, temporal variations and spatial distributions of speckles.

In short, the pointing information (ra, dec, ha) for the observation is converted to a gravity vector. This
gravity vector acts on a very simple cantilever model for the GPI instrument and produces a time-varying
and gravity-dependent shearing between optical surfaces during the observation. Two out-of-plane optics were
chosen, since these produce chromatic phase and amplitude errors, like those that GPI will actually see. (As
noted above, amplitude errors for quasi-static speckles were ignored.) The instrument is assumed to start with a



very low level of quasi-static error (due to speckle nulling or the like). As the observation progresses, the optics
shear. The phase errors on each optic are Talbot propagated to the pupil plane (resulting amplitude errors are
ignored). At the pupil, a simple model for Calibration performance is assumed, and the corrections are applied in
a slow closed loop every 1 minute. This produces a sequence of 3600 files sampled at 1 second, each representing
the continually changing NCP error as compensated by a noisy Calibration system at 1-minute intervals.

The main computational stumbling block for the data challenge is the time it takes to fully simulate the AO
system. GPI runs at 1 kHz and the full GPI AO simulator tracks AO performance and PSFs generation at each
time step. A frozen-flow model of the atmosphere is assumed; the phase screen(s) are translated following wind
velocity vectors. Generating PSFs every 1 millisecond is computationally unfeasible for a data challenge of this
size. Instead, we chose to use a single short exposure (1 ms) image to approximate a 1-second exposure.

Since the typical wind speed is 10 m/s (more on that below), doing a single short exposure per second
approximates the clearing time of phase across the 8-meter aperture. Though not fully accurate (the speckles
will be sharper and more variable), this is reasonable. Previous work by ourselves with the AO simulator21 and
by others for non-AO applications25 show that significant speckle averaging occurs only after a characteristic
period dependent on the clearing time (pupil diameter divided by wind velocity).

So to generate a 60-minute observations, we use 3600 individual runs of the AO simulator, each producing a
1-ms short exposure PSF that approximates a 1-second PSF. Each short exposure uses a phase screen generated
with a unique random seed.

The wind is the major source of variability for the AO run. For each observation, a unique time-varying
atmospheric profile is generated, comprising the turbulence strength r0 and wind velocity vector. The mean r0

is 14 cm; the mean wind speed is 10 m/s. Simple models (e.g. smoother random noise, slow random walks) were
used to produce plausible evolution of atmospheric statistics over the one hour observation time. Furthermore,
since the instrument observed with field rotation to enable ADI processing, the direction of the wind in the sky
changes due to the parallactic angle. This is calculated and tracked and fed into the AO simulator such that the
atmospheric errors due to wind velocity (e.g. a butterfly pattern in the dark hole) will move correctly through
the observation as the parallactic angle changes.

Note that this approach of using 1-ms AO short exposure has huge computational savings, but will produce
images where the atmospheric speckle noise (non-smoothness) is higher than a full 1 kHz simulation.

Also note that this approach has both the AO residuals and the quasi-static NCP errors in the complex field,
so that the generated PSFs fully capture the non-linear interactions between the two types of errors. (A much
faster, but less accurate, method would be to use power spectral density descriptions of the errors to produce
random PSFs reflecting atmospheric and quasi-static PSFs, and then add the terms.)

Note that for the purposes of this initial work, we ignore chromatic aberrations that would be introduced by
the apodized pupil Lyot coronagraph, microlenses, or prisms. The AO simulation uses a wavelength scaling to
estimate the wavelength-dependent atmospheric residual: the phase at at nominal wavelength λ0 is multiplied
by a scaling factor λ/λ0, where λ is the wavelength of interest. For now we are therefore neglecting an important
set of limiting errors.

After the 3600 short AO (with NCP) error simulations are run and produce 3600 5-wavelength PSFs, the
images are composited via addition into 30-second exposures. These 120 images form the basis of each observation
for the data challenge.∗

For the final step of converting to an idealized IFS data cube of the full astronomical scene, we used the GPI
Data Simulation Tool21 (DST). First, each AO output file is converted to the proper input format for the DST.
Next, a script file is produced using the observation information (star brightness and spectrum, observations ra,
dec, and ha, planet parameters such as magnitude, separation and position angle in the field). The data simulator
uses the occulted star and un-occulted planet PSFs (produced by the AO simulator) to construct the scene for
each 30-second IFS exposure. The details of how this is done, and its verification, are described elsewhere.

In this case we use only two of the many noise sources (photon noise and detector read noise). Since units
are properly carried in the code, we apply photon noise directly in the ideal IFS cube (x-y-λ). In a more faithful

∗The datasets are available at http://olbin.jpl.nasa.gov/nakfi/
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Figure 4: Preliminary results from Lawrence Livermore National Laboratory.

simulation, there would be correlations in the read-noise between pixels. Here we artificially make the read-noise
in the data cube spatially white. This was done to match the expected level of read noise in a dispersed and
re-assembled data cube. This works out to be 1.75 DN rms per ideal IFS pixel in a 30-second exposure.

During this process the keywords in the FITS files describing appropriate knowledge for data challenge
participants (parallactic angle, star brightness, etc) are preserved. The final outputs are saved in a compressed
format and collected in an archive.

All 100 observations, each with 120 30-second frames, were provided to all data challenge participants.



4.2 Preliminary Results: Poyneer and Savransky (Lawrence Livermore National
Laboratory)

Our implementation of the Locally Optimized Combination of Images (LOCI) algorithm is based on the original
description presented by Lafrenière6 wherein we seek to minimize the residuals between a target image and a
linear combination of a set of reference images. Using the mathematical formalism of Pueyo,9 we wish to find
the set of coefficients {ck} given by

arg min
ck
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∥
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, (31)

where T is the target image, {Rk}N
k=1 is the set of reference images, and O is the optimization zone—a (possibly

proper) subset of the target and reference image pixels. The solution to this problem is equivalent to the solution
of

MOc − VO = 0 (32)

where

MO[i, j] , =

∫

O

Ri(x, y)Rj(x, y)dxdy , (33)

VO[i] , =

∫

O

Ri(x, y)T (x, y)dxdy , (34)

and c is the column vector containing the values of {ck}. The reference PSF constructed from this linear
combination is subtracted from a subtraction zone S of the target image that is smaller than the optimization
zone, to minimize the risk of subtracting the planet signal along with the background.

While schemes exist for simultaneously using both angular and spectral diversity images in the reference
set,10 the small number of wavelength bands in our data make the inclusion of spectral diversity in a given set
of references marginally useful. Instead, we apply the LOCI algorithm to each wavelength independently, using
only rotated images in the same wavelength for references, and then sum the final output images to increase
signal-to-noise. For the optimization zones, we use radial annuli with height of 5 pixels and angular extent of 30◦,
with subtraction zones of one third the height and extent, centered in each subtraction zone. The subtraction
zones are defined such that they cover the entire space between the inner and outer working angles of each target
image, and overlap by 2% of their annular extents so that no uncorrected areas remain in the final subtracted
images (areas where subtraction zones overlap are mean combined). The solution to the linear least-squares
(LLS) problem is calculated using standard LLS LAPACK routines. It is important to note that the solution
is exact only when matrix MO is invertible, which only occurs in the case where the set of references forms
a complete basis set of the optimization zone, which is not necessarily guaranteed, depending on the specific
realization of the speckle field in the reference images. For our implementation and data set, we find that MO is
well conditioned for the majority of optimization zones, with singularities occurring only near the inner working
angle.

This implementation of LOCI was used in the following manner. Ninety-five of the datasets were analyzed,
producing a single processed ‘image’ for each. The detection threshold in the image was changed to different
levels and standard image processing techniques were used to identify as candidate detections features that were
of the right size and shape (e.g. do not select as a detection a single pixel, do not select as a detection a region
which is a long streak). This was all done in an automated and fully blind mode. Then the results were compared
to the known planet locations to determine if the detections were true positives or false positives.

Figure 4 shows a partial data reduction for the same dataset as illustrated by the University of Arizona in
Figure 6. Figure 5 shows a more detailed analysis of our data reduction for all sets of data, with the planet
separation from star plotted along the x-axis, and planet contrast plotted on the y axis, expressed on a logarithmic
scale. A magnitude 20 planet in the challenge data has a contrast of 10−6. Each black dot is a planet that is
hidden in the data. Each colored circle represents a true detection. Bare black dots are either misses, or lie in
areas that were not searched (grey regions). The size of the circle indicates the maximum threshold in the LOCI
image at which the planet was detected: bright planets at the bottom have higher thresholds. The color of the



Figure 5:
The planet separation from star is plotted along the x-axis. The planet contrast is plotted on the y axis, expressed
as powers of 10. A magnitude 20 planet in the challenge data has a contrast of 106. Each black dot is a planet
that is hidden in the data. Each colored circle represents a true detection. Bare black dots are either misses, or
lie in areas that were not searched (grey regions). The size of the circle indicates the maximum threshold in the
LOCI image at which the planet was detected: bright planets at the top have higher thresholds. The color of
the circle indicates the number of false positive detections in the entire observation for that threshold. Dark red
in this case is no false positives. Orange is 5 false positives also detected at that threshold. Yellow is 10 false
positives; more than this are also colored yellow.

circle indicates the number of false positive detections in the entire observation for that threshold. Dark red
in this case is no false positives. Orange is 5 false positives also detected at that threshold. Yellow is 10 false
positives, and aqua is 20 false positives, both of which are quite high levels.

There are several ways to investigate this further. Particularly interesting would be:

1. Searching closer in than 0.29 arcsec (our default IWA) and farther out than 0.98 arcsec (our default OWA,
which is a circle inscribed in the “dark hole”).



2. Improving our sensitivity limit to making true detections with fewer false alarms on fainter planets. This
is roughly indicated by the dash diagonal line, which we want to move up by turning the orange and yellow
circles above to dark red.

3. Presenting our results in an FROC formalism.

4. Quantifying “Prob Detection” and “Prob False Alarm” as a function of planet location and brightness and
chosen threshold.

4.3 Preliminary Results: Pearson, Caucci, and Barrett (University of Arizona)

The University of Arizona’s approach to the challenge is the Hotelling observer described in Section 3.3. All 100
data sets were used, each consisting of 120 temporal data cubes with 5 wavelengths for a total of 600 frames
per data set. For each data set, the wind angle of the first frame in the set was estimated and all frames in the
set were rotated by this angle, allowing a more accurate calculation of the mean background. As described in
Section 3.2, the data in all 600 frames for each data set were placed into a column vector G, where each element
of G corresponds to one spatial (x, y) pixel at one time and one wavelength. Thus we have a set of column
vectors {Gj ; j = 1, ..., 100} to represent the 100 data sets. The 100 column vectors were averaged element-wise

to give a vector G representing the background, with the assumption that the planet signals are weak enough
that they do not significantly affect the mean.

Computation of the covariance matrix was performed using the covariance decomposition described in Section
3.4. The diagonal matrix Kn

G
corresponds to the science-camera noise, which was estimated as the sum of the

variances of the electronic noise and the Poisson noise from the optically induced photoelectrons. The variance
of the electronic noise was provided, and the variance of the Poisson noise for each diagonal element is the

corresponding element of the mean background vector G. The inverse of the overall covariance matrix can be
easily calculated using the Woodbury Matrix inversion lemma and a 100×100 singular-value decomposition. For
the preliminary results presented here, a similar process was used to calculate the prewhitening operator, or the
inverse square-root of the covariance matrix.

Preliminary results are presented in Figure 6. Figure 6a is simply the sum of all 600 frames of one data set,
each rotated by the parallactic angle specified for that frame. Figure 6b shows the same rotation and sum applied

to the background-subtracted data G − G, and Figure 6c shows the rotation and sum of the prewhitened data

K
−1/2

G

(

G − G

)

. An important note is that these preliminary results consist only of prewhitened images, and

the final steps of the scanning Hotelling observer and thresholding the result have not yet been implemented.
It is anticipated that further suppression of the star background will result when the scanning Hotelling step
is performed because the prewhitened signal will have positive and negative values and act as a bandpass filter
selecting the dominant spatial frequencies in the planet signal. Nevertheless, all five of the planets actually
present are readily visualized in the prewhitened image, including one relatively close to the star. The angular
separations in arc seconds of the five planets from the star are, in order of decreasing brightness: 0.3496, 0.2487,
0.4690, 1.0107, 0.4569.

5. FUTURE DIRECTIONS AND COLLABORATIONS

5.1 Derive Practical Methods for Computation of Covariance Matrices:
Barrett, Caucci, Furenlid, Pearson

The activity we identified as Task # 1 at the conclusion of the workshop was to develop a practical and robust
methodology for implementing the calculation of the data covariance matrix. This activity includes computing
covariance matrices from simulation or experimental data, their inverses, and the square root of the inverses that
comprises the prewhitening filter. The major challenge for the activity just identified is that data structures
are very large, hence attention is required to storage, usage of efficient low-dimensional representation, recursive
updates, and other mathematical tools that we will develop as we progress in our research. The preliminary
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Figure 6:
Preliminary results from the University of Arizona. Five planets are present, all of which are visible in the
prewhitened image. The angular separations of the five planets are listed at the end of Section 4.3.



results reported in Section 4.3 show that the matrix inversion lemma and the corresponding prewhitening formula
offer a promising avenue toward solving these problems.

Knowledge of the data covariance matrix directly and indirectly leads to many benefits, such as the optimal
linear observer (Hotelling observer), the prewhitening of the data to enhance the performance of other algorithms
(such as the matched filter), the simple calculation of ROC/LROC/FROC curves that characterize the perfor-
mance of the algorithm and the imaging system combination. By bringing statistical rigor to data analysis and
enabling the quick calculation of scalar metrics of performance (detection SNR, AUC, AULROC, AUFROC), a
tool is created for algorithm, acquisition strategy, and hardware optimization.

Our objectives are to develop and validate a complete theory for the decomposition and manipulation of the
data covariance matrices that can be practically realized in state-of-the-art computing hardware. We will take
advantage of the latest developments in CPU/GPU parallel architectures, inherent symmetries in the covariances,
sparsity, the matrix-inversion lemma, the Schur complement, tools for simultaneous diagonalization, and recursive
methods.

5.2 Gain Experience Analyzing Existing Data: G ladysz

It has been demonstrated that the Hotelling observer performs better, in terms of AUC, than the commonly used
simple detection algorithms.2,3 Moreover, it has been shown that the so-called spatio-temporal Hotelling observer
significantly outperforms not only the current long-exposure detection algorithms, but it is also a much better
approach, in terms of AUC, than the purely spatial Hotelling observer.5 On the other hand, the assumptions
that went into these simulated tests, such as the availability of noise-free training data might be optimistic. The
other approach is to try to extract the covariance matrix directly from the noisy data, available, for example,
from the archive. Unfortunately there are serious obstacles to this approach, most notably strong requirements
on the number of the available noisy images (or sequences in the case of the spatio-temporal Hotelling observer).
This number can reach millions to tens of millions of image sequences to process one image sequence of moderate
size (64 by 64 pixels by 10-50 frames).

Still, as a proof-of-concept, we will attempt that latter, brute-force approach. Four algorithms would be
used: spatial Hotelling observer on long exposures,3 spatio-temporal Hotelling observer on the sequences of
short exposures,5 statistical speckle discrimination on sequences of frames,26 a combination of statistical speckle
discrimination (as a pre-processing, object-amplifying step), and a subsequent application of the spatial Hotelling
observer. The ROC curves would be constructed for each of these methods. We hope to show that the exploitation
of the temporal information is beneficial, and that advanced image processing methods, like the spatio-temporal
Hotelling observer can actually be used on real data and produce a benefit in terms of detectability. The crucial
question is if we are given the error in the sample-based estimate of the covariance matrix do we still gain by
employing the Hotelling observer? At what level of error (or sample size) does the benefit, in terms of AUC,
disappear?

5.3 Compare how different algorithms make use of information in the data: Mouillet
and Mugnier

The exoplanet imaging data challenge will make possible a cross-comparison of the performance of various
algorithms under well-controlled conditions through the use of the simulated data sets described in Section
4.1. We propose to study these various algorithms based on their principle and their performance in the data
challenge, in terms of their redundancies in the use of information as well as the a priori known properties of
the data. We will identify what we think is the most useful information that helps discriminate a planet from
speckles—information about the planet itself and the speckle halo properties—and identify how each approach
takes advantage of it.

This analysis will also help us propose improvements to the existing algorithms in the following way:

1. Better understand the behavior of each algorithm, whose performance may depend on the observing con-
ditions. Under different conditions the dominant limitations may vary, and the importance of any recorded
information may be weighted differently.



2. Through the above understanding, propose ways of merging the best properties of each algorithm.

Each algorithm may estimate differently the prior information that it uses for detection, such as the different
parts of the data covariance matrix. This may be either calibrated prior to the observation, or from the telemetry
if available, or most often estimated from the data.

5.4 Derive more accurate models of the point-spread functions: Devaney

An algorithm has been developed which fits spline functions to multi-wavelength images in order to build an
estimate of the PSF.27 The fitting is inherently local and so could be equivalent to a multi-spectral LOCI. The
difference is that a model of the PSF is built, rather than using a combination of the actual data. This model
can then be scaled to any required wavelength. We believe that using the model may bring a gain in contrast
ratio. The algorithm is incorporated in a matching pursuit approach whereby the PSF parameters and the planet
parameters (positions and spectral energy distributions) are iteratively optimized. Alternatively, the model PSF
could be used in a Hotelling approach. The algorithm has been developed for non-coronagraphic data for which
the planets can be assumed to have the same PSF as the central star. The multi-wavelength model fitting may
still be applicable to reducing residual speckle in coronagraphic images, and we will use the data challenge to
investigate this.

5.5 Make Optimal Use of Auxiliary Data Measurable by GPI and SPHERE: Savransky

The actions on this task flow directly from the development of the Hotelling observer formalism for the specific
problem of ground-based planet-finding and the experience gained from applying these tools to real and simulated
data. An initial priority must be to agree upon conventions between the two (or more) groups, especially on data
formatting (and the inclusion of synchronized telemetry) and on a detection criterion (i.e., using ROC/LROC
as the primary metric).

Representatives from the different coronagraph projects have agreed to independently create lists of all
auxiliary data that they currently plan to collect, and identify any telemetry that should be added (in the case
of GPI, this includes either raw or processed outputs from the CAL system). The teams will then exchange lists
and thereby begin to populate a global list of useful auxiliary data for planet-finding that will be shared with
the community in general.

Along with the identification of all auxiliary data, we must decide whether each particular telemetry stream
can be stored entirely, or whether we will only store a statistical description in the form of a recursively updated
first and second moment estimate. The latter approach may also include using the Schur complement to calculate
the conditional statistics of the science and auxiliary data.

During the first year of science operations, the teams will build up experience on applying the techniques and
algorithms from Task #1 (Section 5.1) on real science data. It would be useful for the teams to communicate
during this period to compare experiences and any refinements they have made to their methodologies.

At the same time, the groups must begin to prepare for the inclusion of the information provided by the Task
#1 tools into their campaign scheduling; for example, incorporating AUROC statistics into dynamic campaign
rescheduling after the initial KG matrices have been constructed from initial science data. As part of this
preparation, it may be useful to construct simple campaign simulations to evaluate the effects of this type of
information.

Finally, Laurent Pueyo has a simulated Calibration data set which can be used to evaluate maximum likelihood
wavefront reconstruction. While the data is GPI Calibration specific, it can act as a general test for the efficacy
of a Maximum Likelihood Estimator in wavefront reconstruction. Furthermore, these data can be folded into an
extension of the data challenge as an auxiliary data set.



Figure 7: Participants at the Exoplanet Imaging Workshop. Left to right: Harrison Barrett, David Mouillet,
Szymon G ladysz, Luca Caucci, Lars Furenlid, Laurent Mugnier, Dmitry Savransky, Lisa Poyneer, Laurent Pueyo,
Peter Lawson, Dimitri Mawet, Nicholas Devaney, and Richard Frazin. Not shown: Olivier Guyon, John Krist,
Christian Marois, and Rémi Soummer.

6. CONCLUSION

At the time of writing the exoplanet imaging challenge is still in progress. The simulated datasets have been
prepared and distributed for the first round of analysis in the exoplanet imaging challenge. The challenge itself
will take place in several phases, with each phase introducing added complexity to the data. A preview of results
is presented here. The final results will be published in the astronomical literature. Work with this group is
actively being planned through 2012–2013.

Through support from the National Academies Keck Futures Initiative we have initiated several collabora-
tions. This is a field that is still in its infancy. The formal approach that we advocate promises to yield a more
profound understanding of correlations in noise in exoplanet data and how they may be used to our advantage.
This work promises to help not only ground-based astronomy, but by extension space-based astronomy as well.
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