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Statistical Behavior of Joint Least-Square Estimation
in the Phase Diversity Context

Jérôme Idier, Laurent Mugnier, and Amandine Blanc

Abstract—The images recorded by optical telescopes are often
degraded by aberrations that induce phase variations in the pupil
plane. Several wavefront sensing techniques have been proposed to
estimate aberrated phases. One of them is phase diversity, for which
the joint least-square approach introduced by Gonsalves et al. is a
reference method to estimate phase coefficients from the recorded
images. In this paper, we rely on the asymptotic theory of Toeplitz
matrices to show that Gonsalves’ technique provides a consistent
phase estimator as the size of the images grows. No comparable
result is yielded by the classical joint maximum likelihood interpre-
tation (e.g., as found in the work by Paxman et al.). Finally, our
theoretical analysis is illustrated through simulated problems.

Index Terms—Error analysis, least-squares methods, optical
image processing, parameter estimation, phase diversity, statistics,
Toeplitz matrices.

I. INTRODUCTION

THE images recorded by optical telescopes are often de-
graded by aberrations that induce phase variations in the

pupil plane. In the case of ground telescopes, atmospheric tur-
bulence is typically responsible for such phase aberrations. Im-
perfections of the optical system are another important source
of errors, most of the latter being static while the former evolves
with atmospheric turbulence.

Phase aberration is an ackowledged cause of degradation of
the optical transfer function (OTF). The situation becomes far
more favorable if the aberrated phases can be inferred and com-
pensated. Several wavefront sensing techniques have been pro-
posed to allow phase estimation. One of them is Gonsalves’
phase diversity technique [1], [2]. It consists in the simultaneous
acquisition of the usual focal plane image and of (at least) one
additional image with a known defocus. Then the aberrations
are numerically estimated using the information brought by the
set of measured images.

Joint least-square (JLS) estimation of the aberrations and the
observed object has been proposed by Gonsalves [1], [2], and
it has since become the reference phase diversity technique. In
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[3], a statistical interpretation is given: The JLS estimate can
be viewed as a joint maximum likelihood (ML) solution under
the assumption of additive white Gaussian noise. In the present
paper, our main objective is to examine its asymptotical statis-
tical properties w.r.t. aberration estimation. By “asymptotical,”
we refer to a situation where the number of data points grows
to infinity, and preferentially to the case where the size of the
acquired images is arbitrarily large. Such a situation is clearly
formal, i.e., it is not aimed to be reproduced in practice.1 How-
ever, the asymptotical behavior of the solution may bring mean-
ingful information about its behavior in realistic situations.

As the number of data points grows to infinity, the optimality
of ML estimation is granted in a wide theoretical framework.
Unfortunately, the usual JLS solution to the phase estimation
problem does not pertain to this framework, since the number
of unknowns (i.e., both the aberrated phase parameters and the
object) increases with the number of observations. It rather cor-
responds to an approach studied by Little and Rubin [5]. Ac-
cording to their conclusions, this approach is not generally reli-
able from the statistical viewpoint, especially when the relative
proportion of unknowns does not go to zero as the size of the
data set increases.

In [6] and [7], a true ML estimate in the sense of [5] is pro-
posed for the aberration parameters in the context of phase di-
versity: The unknown object is treated as a nuisance param-
eter, which means that it is integrated out to form the likelihood
with respect to phase parameters. In contrast with the JLS solu-
tion, the theoretical asymptotical optimality of such a solution
is granted.

Yet, it has been established by practical evidence that the be-
havior of the JLS solution to the phase parameter estimation
is globally satisfactory. It is the aim of the present paper to
examine the statistical properties of JLS type solutions more
specifically. To our best knowledge, this is a fully open ques-
tion, since the only few contributions devoted to statistical anal-
ysis of phase diversity imaging assume that the source object is
known [8], [9].

Our main result is that the JLS solution possesses the essential
features of a minimum contrast estimator [10, Section 3.2]. As
such, it is a consistent estimator (i.e., it converges toward the
true value as the size of the data set increases).

II. DATA MODEL

Let correspond to a focused
image measured on a square grid

1Physical phenomena should then be taken into account, such as anisopla-
natism in the case of extended objects observed through turbulence [4].
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of size , with . In the
isoplanatic patch of the telescope, it is obtained by noisy con-
volution of the object with the focused point-spread function
(PSF) :

(1)

where denotes convolution between functions of and
corresponds to observation noise. The PSF is given by ,
with

(2)

where is the usual scalar product in and .
The aperture function is known and of limited spa-
tial extent, and is the unknown aberrated phase function.
Following [3] and others, we shall consider a finite linear
decomposition for : . Typically, is a set
of Zernike polynomials [11].

Let us remark that the OTF (i.e., the Fourier transform of the
PSF) has a finite support since is of limited extent. In the
sequel, it will be assumed that the OTF vanishes outside the
square , so that no aliasing effect
occurs. Then, it is possible to cast the observation model within
a fully discrete framework

(3)

where denotes convolution between functions of ZZ , i.e.,

ZZ .
In order to allow practical computations, the convolution

product in (3) must be restricted to finite arrays. Depending
on the assumption made at the boundaries, several alternatives
are possible, none of which being exact unless the object has
a known finite support. In particular, the periodic boundary
condition corresponds to cyclic convolution. For the sake of
computational simplicity, it is the most commonly adopted
approximation.

In all cases, the approximate observation model can then be
described in a vector-matrix formulation using lexicographical
orderings of the image and of the object [12]. Let de-
note a column vector of length corresponding to an array

scanned in lexicographical order. Then,
all approximate observation models read

(4)

where is a Toeplitz-block-Toeplitz (TBT)
matrix with blocks of size , where de-
pends on the adopted approximation. In the case of cyclic
convolution, and is a square
matrix with a circulant-block-circulant (CBC) structure:

, where the symbol denotes
cyclic convolution between two-dimensional (2-D) finite arrays.
The most usual approximation corresponds to
where is obtained from by inverse 2-D discrete Fourier
transform (DFT)

which is practically implemented using fast Fourier transform
techniques.

In defocused planes, the observation model (1)–(3) general-
izes under the following form:

(5)

(6)

(7)

with , where are known phase in-
crements. The usual approximation of cyclic convolution corre-
sponds to2

(8)

where

(9)

with

(10)

III. JOINT LEAST-SQUARE APPROACH

Let us introduce the following penalized least-square
criterion:

(11)

where conventionaly, the index value refers to focused
quantities (e.g., ). In what follows, the default range of
summation on image indices is .

Within the probabilistic framework, choosing the above pe-
nalizing term corresponds to assuming that the object is a
centered random vector with a covariance matrix proportional
to (provided that is actually invertible). Let
us also remark that the original approach introduced by Gon-
salves corresponds to and . Choosing as
filtering low frequencies out and setting to some strictly pos-
itive value has a favorable regularizing effect on the quality of
the restored object [7, Fig. 4(b)]. At low signal-to-noise ratio, it
is also favorable with respect to phase estimation [7, Fig. 4(a)].

Finding a joint minimizer of can be partially
simplified as follows [2], [3], [13]. For any , minimizing

as a function of amounts to solving a quadratic
programming problem. The set of solutions is characterized by
the normal equation

(12)

where

2Thereafter, the operation of lexicographical reordering colf�g is understood
whenever unambiguous.
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is the associated normal matrix. In particular,
is the generalized inverse solution (matrix

denotes the pseudo inverse of ) [14]. If is full rank,
then and is the unique solution of (12). Let

Basic algebraic manipulations yield

(13)

(14)

(15)

Hence, in order to obtain , it suffices to maximize , which
only depends on the unknown phase parameters through
matrices . Since no closed-form expression of the maxi-
mizer of is available, one must resort to some iterative op-
timization algorithm [3], [7], [13].

The case where matrices and are CBC introduces
further simplifications, since the eigenvalues of a CBC matrix
correspond to the 2-D DFT of its first row [15]. When such
approximations are adopted, it is numerically preferable (and
formally equivalent according to Parseval identity), to maxi-
mize using quantities expressed in the Fourier domain [3],
[7], [13].

IV. ASYMPTOTIC BEHAVIOR OF THE JLS SOLUTION

In this section, “true” quantities are denoted using a tilde,
e.g., and denote the true object and the true th PSF,
respectively.

An asymptotical study of the behavior of the JLS solution
needs to refer to a statistical framework. Here, we shall as-

sume that the noise signals ZZ are white, cen-

tered, identically distributed, of same finite variance , and un-
correlated: ZZ ,

(16)

(17)

where is the Kronecker delta symbol: if ,
otherwise.

By “asymptotical,” one could refer to at least three limiting
situations

This paper focuses on the last case, because it corresponds to a
realistic situation (in the sense that is usually much greater
than ). Moreover, the other two cases can be studied in the
usual ML framework, since they correspond to situations where
the number of unknowns remains constant.

In the framework of minimum contrast estimation, one min-
imizes an objective function that holds the following
properties [10]:

C1) as , uniformly converges in proba-
bility toward a limiting function ;

C2) is a contrast function relative to , i.e., its minimum
value as a function of is uniquely attained at .

Under quite general regularity conditions, minimum contrast
estimators are weakly consistent [10, Section 3.2.3], i.e., the
minimizer of converges in probability toward

which will be noted . Under additional con-
ditions, one can also establish that is asymptotically nor-
mally distributed around with a standard deviation propor-
tional to [10, Section 3.3.4].

Least-square estimation constitutes a fundamental case of
contrast estimation. Minimizing actually falls within the
nonlinear generalized least-square (NLGLS) approach:
is a quadratic objective function of the data , which are
nonlinear functions of the unknowns . Moreover, is
not merely a sum of squared residuals, hence the mention
“generalized”.

Both theory and practice of least-square estimation are well
documented, particularly in the field of econometrics. For in-
stance, [16] provides a detailed review of asymptotical statis-
tical properties of least-square estimation. Some contributions
address problems (such as estimation in an errors in variables
model [17]) that are structurally close to phase diversity esti-
mation using the JLS approach. Yet, we have been unable to
find directly applicable results to the phase diversity problem.
Nonetheless, a tailormade statistical study does seem achievable
within the NLGLS framework. In the present paper, we only out-
line the main conditions that lead to establish consistency.

The most important step is to check that the limiting behavior
of meets Conditions C1 and C2 related to
minimum contrast estimation. As the image size increases, two
phenomena must be taken into account to establish the limiting
expression of .

On the one hand, the effect of approximating the convolution
on finite arrays vanishes. This phenomenon can be mathemati-
cally studied using Gray’s theory of asymptotically equivalent
matrices [18].

Definition 1: Two series of square matrices , of size
are said asymptotically equivalent (which is denoted

) if

• , are uniformly bounded in strong norm (i.e., their
maximal singular value is uniformly bounded);

• , where is the
Frobenius norm: ( is the trace
of a square matrix, i.e., the sum of its diagonal elements,
which is also the sum of its eigenvalues).

Specifically, important results establish the asymptotical equiva-
lence between Toeplitz and circulant matrices [18], and between
TBT and CBC matrices [15], [19].

On the other hand, the random behavior of noise signals is
averaged, according to a large numbers effect. Actually, we will
also have to consider the true object from a statistical view-
point, the latter being considered as a second-order stationary
random process.
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To simplify the derivations, we only establish the expression
of , implicitly assuming that uni-
formly converges in probability toward under appropriate ad-
ditional hypotheses (at least, should be a correlation-ergodic
stationary random process). In Section V, it is checked by simu-
lations that this conjectured behavior is in good agreement with
practice.

Theorem 1: Let us assume the following.

1) The true object is a second-order stationary random
process, centered, with a stable3 correlation function .
Let denote the power spectral density function of :

.
2) The noise signals fulfill (16) and (17) and they are

uncorrelated with .
3) The cyclic convolution approximation (8) has been

adopted: .
4) , is CBC and there exists an impulse response

ZZ such that with

.
5) and ,

where and are the 2-D discrete time Fourier trans-
forms (DTFT) of and , respectively

Then, converges toward
, with

(18)

(19)

Proof: See Appendix A.
Remark 1: In the first assumption of Theorem 1, it would be

more realistic to suppose that the object has a strictly positive
mean value . Such a modification introduces the following
additional term to

which is a constant term since

does not depend on . For this reason, we maintain in
the rest of the paper.

3For example, absolutely summable: xxx j~r(xxx)j <1.

Remark 2: According to Assumption 3, the range of The-
orem 1 is restricted to cyclic convolution, although generaliza-
tion to alternate boundary conditions seems possible.

Theorem 2: If , then minimizes
and the minimum value is

.
Proof: See Appendix B.

Several remarks can be made concerning Theorem 2.
Remark 3: To benefit from the statistical property of The-

orem 2, it is required that the regularization term in (11)
asymptotically vanish. Alternately, in strict conformity with a
Bayesian approach, one could rather choose and according
to , . Then, asymptotically
corresponds to the Wiener solution. In this case, the identities
of Appendix B yield and

Unfortunately, this does not allow to conclude that is
the minimum value of .

Remark 4: According to Theorem 2, it seems preferable not
to regularize the criterion when the dataset is large enough.
This theoretical result meets the conclusions drawn from
simulated experiments: In the most favorable situations (such
as [7, Fig. 4(b)]), the empirical mean squared error (MSE)

is an increasing function of . In such favorable
cases, the estimation variance is small, so the MSE is mainly
due to bias. In less favorable situations (such as [7, Fig. 4(a)]),
penalization also creates bias, but, at the same time, it has a
favorable effect on variance. This is a classical situation of
bias/variance compromise. In Section V, the same phenomenon
is reexamined as a function of the size of the dataset.

Remark 5: If (5) holds without aliasing, then the OTF
necessarily vanishes on the boundaries of the square . As a
consequence, Assumption 5 of Theorem 1 holds only if

, which contradicts the assumption of Theorem 2. Choosing
strictly positive, possibly very small, values of is a satisfying
option in practice. From a more theoretical viewpoint, a possi-
bility to alleviate Assumption 5 is to modify the original least-
square criterion. More precisely, let us replace each fidelity-to-
data term by a generalized least-square term

, where is a CBC matrix defined
from an impulse response that cancels high frequencies out
(at least those that violate the condition ).
Incorporating into our previous calculations, we are led to
the following conclusions.

• Expression (13) of criterion is still available provided
that be replaced by in (14) and (15). As a
particular case, provides Löfdahl and Scharmer’s
solution based on noise filtering [20, Section 2.3]. A com-
parable data filtering procedure is proposed in [21].

• Theorem 2 still holds, provided that

• Let us assume . Then Assumption 5 in Theorem 1
can be replaced by
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). Let be the DTFT of . There exists such that
,

Finally, let us seek conditions under which is actually
the unique minimizer of

Any value of that cancels the integral part of is obvi-
ously a minimizer, by necessary and sufficient condition. Then,
equivalently, and are
colinear for all , i.e.,

such that

such that (20)

Let us assume that there exists a filter such that (20) holds
for some . This means that we are facing a strong iden-
tifiability problem: The two solutions and
are not distinguishable from each other on the basis of the
data, whatever the size of measured images and whatever the
adopted method of estimation. Such a situation happens if the
phase diversity functions are not appropriately chosen, e.g.,
[22, Appendix B].

• From only one measured image , the sign of
the symmetric component of (i.e., with

) is not identifiable.
• The same undeterminacy holds if the phase diversity func-

tions are chosen antisymmetric ( ,
). This does not occur in practice since defocus corre-

sponds to , where is the th defocus
distance.

• In any case, the couple is only identifiable up to an
arbitrary spatial shift (here is the Dirac
delta function), i.e., tilt coefficients are not identifiable [7].

• From only one measured image , the sign of
the symmetric component of (i.e., with

) is not identifiable.
• The same undeterminacy holds if the phase diversity func-

tions are chosen antisymmetric ( ,
). This does not occur in practice since defocus corre-

sponds to , where is the th defocus
distance.

• In any case, the couple is only identifiable up to an
arbitrary spatial shift (here is the Dirac
delta function), i.e., tilt coefficients are not identifiable [7].

V. SIMULATION STUDY

A. Conditions of Simulation

This section proposes an empirical study of the statistical be-
havior of estimated phase coefficients as a function of the size
of the observed images.

TABLE I
VALUES OF ZERNIKE COEFFICIENTS (EXPRESSED IN RADIANS)

USED TO SIMULATE THE FOCUSED PSF

Fig. 1. (a) Aberrated phase � = � = �  in radians, where �

are given in Table I. (b) Central 20� 20 part of the resulting PSF h on ZZ .
(c) Aberrated phase in radians after defocus � = � + � . (d) central 20� 20
part of the resulting PSF h . Both h and h almost vanish outside a central
square of 20� 20 pixels.

Following [7], we have simulated a focused PSF using the
first 21 Zernike polynomials with coefficients given by Table I
[see Fig. 1(a) and (b)]. We have also simulated one defocused
PSF using , with radians [see
Fig. 1(c) and (d)].

On the other hand, we have selected two different objects .

• “ ”: The object is a Gaussian white noise sampled
on a 512 512 grid.

• “ ”: The object is an Earth view sampled on the same
512 512 grid depicted on Fig. 2(a).

Couples of observed images of size 512 512 have been
obtained using the approximate model (8), only the central
256 256 part of them being considered afterwards in order
to get rid of the effect of cyclic convolution [see Fig. 2(b)
and (c), respectively]. Finally, images have been corrupted by
realizations of white Gaussian noise with a realistic signal to
noise ratio of 100 dB.

In the sequel, , i.e., the first three coeffi-
cients have not been estimated.

• The piston coefficient is a constant added to the phase
and has no influence on the shape of the PSF.

• The tilt coefficients , introduce a shift in the image
that is of no importance for extended object.
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Fig. 2. (a) The 512� 512 Earth view used to simulate the extended object called “Earth.” The original source is an image taken by satellite SPOT3, which
has been downsampled by a factor two in both directions—Copyright CNES/Distribution SPOT IMAGE. (b) Central 256� 256 part of noiseless focused image.
(c) Central 256� 256 part of noiseless defocused image.

By mean of Monte-Carlo simulations using several independent
couples of realizations of noise, it is possible to evaluate the
statistical performance of for different values of . Here,
we have evaluated and displayed the following quantities for

independent realizations of noise.

• The Euclidian norm of the empirical bias vector (hence-
forth referred as the bias of , for sake of brevity):

where .
• The Euclidian norm of the vector of empirical standard

deviations (henceforth referred as the standard deviation
of )

• The square root of the empirical MSE (henceforth referred
as RMSE) .

B. “ ” Object

Fig. 3(a)–(c) deal with the “ ” object. They, respec-
tively, depict the bias , standard deviation and RMSE
of as functions of the regularization parameter . In the
“ ” case, maximization of (15) has been considered with

equal to the identity matrix and under the usual CBC ap-
proximation for and . Three nested images have been
tested, of size , with .

On the one hand, processing a larger image appears favorable
in terms of bias [Fig. 3(a)]. The reason is that the effect of the
CBC approximation becomes negligible for large size images.

However, the relative improvement is more substantial for small
values of . This empirical observation fully meets the con-
clusions of Section IV: As grows, a vanishing series of
is required to get an asymptotically unbiased estimator .

On the other hand, the standard deviation of is a de-
creasing function of [Fig. 3(b)]. It also decreases with ,
and it is important to notice that the corresponding decreasing
rate is rather independent of . This is not surprising since
random fluctuations are averaged whatever the value of .

As a global consequence in terms of bias/variance compro-
mise, the minimizer of the RMSE shifts leftward as
grows [Fig. 3(c)]. The minimum value is ,
0.1052, and 0.0476 for 64, 128, and 256, respectively:
It roughly decreases proportionaly to , although other
values of should be tested to assess the actual decrease rate.

C. “ ” Object

Fig. 4(a)–(c) deal with the “ ” object. Maximization
of (15) has been considered in the same conditions as in
Section V-B, provided that has been deduced from a power
spectral density model with parameters fitted using the true
object (see [7, Eq. (13)]).

Results depicted on Figs. 3 and 4 are comparable, except that
the bias reaches much larger values in the present case, even
for the largest size of image. This is a consequence of edge ef-
fects due to the adopted cyclic convolution approximation in the
presence of extended, structured objects: Nonrealistic sizes of
images should be processed to get statistically meaningfull es-
timates of .



IDIER et al.: STATISTICAL BEHAVIOR OF JOINT LEAST-SQUARE ESTIMATION 2113

Fig. 3. (a) Bias b . (b) Standard deviation � . (c) RMSE r of �̂�� in the
“Noise” case, i.e., the true object is the realization of a 2-D Gaussian white
noise, of size Q �Q . For the RMSE, the minimum value of each curve is
indicated by a blackened symbol.

To overcome this difficulty, Löfdahl and Scharmer introduced
a tapering technique [20],4 where:

• the observed images are windowed in order to apodize the
edges;

• in the least-square criterion (11), the fidelity-to-data term
is modified: The norm is only considered over a central,
nonapodized part of the images.

We have applied this technique to the data simulated in the
“ ” case, using a 2-D modified Hamming apodization
window with a central plateau of size . Fig. 5(a)
[compared to Fig. 4(a)] shows an impressive effect on bias.
Even if the variance slightly increases, at least for large size
images [Fig. 5(b) compared to Fig. 4(b)], the overall effect
is largely favorable in term of RMSE [Fig. 5(c) compared to
Fig. 4(c)].

Our theoretical study has been derived in the case where the
images are not apodized by Löfdahl and Scharmer’s tapering
technique. However, given the results depicted on Fig. 5, it

4See also [23] for an alternative technique based on the use of a guard-band.

Fig. 4. Same as Fig. 3, except that the true object is the Earth view depicted at
Fig. 2(a).

seems reasonable to expect that consistency results still hold,
provided that the size of the apodized edges vanishes as
grows.

VI. CONCLUSION

In this paper, we have studied some important statistical prop-
erties of the phase diversity technique introduced by Gonsalves
[1], [2]. In particular, it has been shown that Gonsalves’ tech-
nique is a minimum contrast method, with respect to phase
estimation. As a consequence, it provided a consistent phase
estimator as the size of the processed images grows (putting
aside practical and physical limitations). No comparable result
is yielded by the classical joint ML interpretation (e.g., as found
in [3]). In particular, the Gaussian character of the noise is not
a prerequisite in our convergence study.

By simulation, we have checked that the JLS method behaves
as predicted by theory in the case of extended objects. We have
also observed that the edge effects due to cyclic convolution
introduce a strong bias on phase estimation, that only slowly
diminishes as the image size grows. Modified versions of the
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Fig. 5. Same as Fig. 4, except that observed images have been apodized using
the tapering technique introduced in [20].

JLS method are then required to recover meaningful estimates.
We have more specifically considered the tapering technique
proposed in [20], and we have empirically verified that the latter
technique is still statistically convergent.

Finally, some alternative error metrics have been introduced
to replace the criterion induced by the JLS approach [24],
[25], for the sake of faster computations. An interesting perspec-
tive would be to study if such alternative error metrics are still
minimum contrast functions.

APPENDIX A

Proof of Theorem 1

Let us decompose the observed images according to
, where . Then, we

have

Hence

according to Assumptions 1 and 2. The second term converges
toward the second term of (18), according to Parseval identity.
As a consequence, we have .

The main part of the proof is to express ,
where . In particular, we need to examine the
asymptotical behavior of matrices . This is done in the fol-
lowing technical lemma.

Lemma 1: For all , we have , where
is the CBC matrix whose eigenvalues are equally
distributed on , i.e., .

Proof: Let us introduce the DTFT of : ,

so that is the CBC matrix whose eigenvalues are equally
distributed on . According to (9) and (10), we have

(21)

where is extended over in a periodic manner: ,
ZZ , . On the other hand, (6) and (7)

also yield

(22)

It is clear from (21) and (22) that and are uni-
formly bounded by . It is also clear from the
same equations that is a Rieman sum that uniformly
converges toward when grows to infinity

such that

As a consequence, we have

for any , provided that is large enough. Hence,
.

Let and
(where is the identity matrix).

Given (15), we have5

According to Lemma 1 and to [18, Theorem 2.1], each ma-
trix is asymptotically equivalent to another CBC matrix,
whose eigenvalues are equally distributed on

Let us remark that Assumption 5 is needed here to ensure that
is uniformly bounded in strong norm.

5Recall that Tr fA Bg = Tr fBA g for any two matrices A, B of same
dimensions.
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On the other hand, is an intercorrelation matrix, which
is TBT since is stationary. Moreover, is generated by the
crosscorrelation sequence defined by

where is the reversed version of : .
The sequence is stable for all , since

• is stable by assumption;
• , is stable since given (6) and (7), we have the

following Parseval identity

• convolution products and sums of stable functions are
stable.

Thus, according to [18, Lemma 4.6]6, is asymptotically
equivalent to a CBC matrix whose eigenvalues are equally dis-
tributed on , , where

Finally, according to [18, Theorem 2.1], the matrix product
is also asymptotically CBC, with eigenvalues

equally distributed on , so we get the following
converging Riemann sum

APPENDIX B

Proof of Theorem 2

Evaluation of is straightforward

which takes an extremely simple form when

Furthermore, let us show that is actually the min-
imum value of . By Cauchy–Schwartz inequality

6For sake of correctness, Gray’s asymptotical result only applies to Toeplitz,
not necessarily Hermitian, matrices. In extensions to TBT matrices found in
[15], [19], only the Hermitian case is considered. Here, we shall admit that
Gray’s result extends to TBT matrices, not necessarily Hermitian.

which allows to deduce from (18) and (19) that

When , the latter inequality drastically simplifies ac-
cording to

which proves the assertion.
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