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ABSTRACT

The resolution of coronagraphic high contrast exoplanet imaging devices such as SPHERE is limited by quasi-
static aberrations. These aberrations produce speckles that can be mistaken for planets in the image. In order to
design instruments, correct quasi-static aberrations or analyze data, the expression of the point spread function
of a coronagraphic telescope in the presence of residual turbulence is useful. We have derived an analytic formula
for this point spread function. We explain physically its structure, we validate it by numerical simulations and
we show that it is computationally efficient. Finally, we use it in a simulation of focal-plane wave front estimation
in the COFFEE method (based on coronagraphic phase diversity). The preliminary results, which give a sub-
nanometric precision in the case of a SPHERE-like system, strongly suggest that quasi-static aberrations could
be calibrated during observations.
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1. INTRODUCTION

Direct detection of exoplanets is limited by the presence of speckles on scientific images. The origin of these
speckles is quasi-static aberrations in the optical system.

In a high-contrast imaging system without residual turbulence, or for a ground-based adaptive optics-corrected
system recording short exposures, the on-axis coronagraphic point spread function of the system can easily be
computed as a function of the instantaneous aberrations (quasi-static and turbulence-induced). To the best of
our knowledge, no expression has been previously published for the long exposure coronagraphic point spread
function. Such an expression would be of great use for at least three different applications:

• The design, simulation and optimization of the coronagraphic system;

• The analysis and correction of the quasi-static aberrations,1 which are the ultimate limitation of the
performance of the coronagraph;

• The image reconstruction.2
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All those aspects demand that we know a direct model of image formation through a coronagraphic telescope.
In the case of a ground-based telescope, with typical exposure times of several tens of seconds to minutes,
turbulence, even in the form of residual turbulence of an extreme adaptive optics system, must be taken into
account. We derive the long exposure coronagraphic point spread function as in Ref. 3, we interpret it, we validate
it numerically, and we use it in the coronagraphic phase diversity COFFEE method, obtaining a nanometric
reconstruction error.

2. INSTANTANEOUS POINT SPREAD FUNCTION OF A TELESCOPE EQUIPPED
WITH A CORONAGRAPH

Let us consider a telescope equipped with a coronagraph as described in figure 1.

Figure 1. Sketch of a telescope equipped with a coronagraph

Let us denote by hc the coronagraphic point spread function of the instrument without turbulence. It writes

hc (α;ψu, ψd) =
∣∣F−1 {ψd ×F [M×F−1 (ψu)

]}
(α)
∣∣2 . (1)

This equation simply expresses the propagation from successive planes to the next ones, and the quadratic
detection, in Fig. (1). The coordinate α is in the detector focal plane, ψu = Pueiφu where Pu is the upstream
pupil and φu the quasi-static upstream phase aberration, M the coronagraphic focal plane mask, ψd = Pde

iφd

where Pd is the downstream pupil and φd the quasi-static downstream phase aberration, and F the bi-dimensional
Fourier transform in space:

F [f ](r) =

∫∫
R2

f(α)× e−i2πα·r dα. (2)

For notational simplicity we take λ = 1 in the equations, that is to say we use the same coordinate system for
the pupil phases and for the transfer functions.

In the presence of turbulence, the instantaneous point spread function of this instrument writes1

hsec(α, t;ψu, ψd) = hc(α;ψu × eiφt(t), ψd). (3)

Here hsec(α, t, ψu, ψd) (sec stands for “short exposure coronagraphic”) is the instantaneous point spread function
taken at coordinate α in the detector focal plane at time t and φt(t) is the instantaneous turbulent phase at time
t if the telescope is ground-based and equipped with adaptive optics.

For notational simplicity we take λ = 1 in the equations, that is to say we use the same coordinate system
for the pupil phases and for the transfer functions.



3. LONG EXPOSURE CORONAGRAPHIC POINT SPREAD FUNCTION

In current high contrast systems such as SPHERE or GPI, the exposure time is large with respect to the typical
evolution time of corrected turbulence, so that the signal that is actually recorded by the detector is the long
exposure point spread function, which is an average over time of the short exposure point spread function.

hlec(α;ψu, ψd) = 〈hsec(α, t;ψu, ψd)〉t . (4)

Here hlec is the long exposure coronagraphic point spread function, and 〈〉t is the averaging over time. The
Wiener-Khintchine theorem states that

hsec(α, t;ψu, ψd) = F−1
({
ψd ×F

[
M×F−1

(
ψueiφt(t)

)]}
⊗
{
ψd ×F

[
M×F−1

(
ψueiφt(t)

)]})
(α), (5)

where the bi-dimensional correlation product, noted ⊗, is defined by :

f ⊗ g(α) =

∫∫
R2

f∗(α1)× g(α1 + α) dα1. (6)

Here f∗ is the complex conjugate of the function f . In developed form, the long exposure coronagraphic point
spread function now writes:

hlec(α;ψu, ψd) =
〈
F−1

({
ψd ×F

[
M×F−1

(
ψueiφt(t)

)]}
⊗
{
ψd ×F

[
M×F−1

(
ψueiφt(t)

)]})
(α)
〉
t
. (7)

To somewhat simplify calculations, we will consider the optical transfer function instead of the point spread
function. Let h̃ = F(h) be the Fourier transform of the point spread function. The integral over space commutes
with the averaging over time, so

h̃lec(r;ψu, ψd) =
〈{
ψd ×F

[
M×F−1

(
ψueiφt(t)

)]}
⊗
{
ψd ×F

[
M×F−1

(
ψueiφt(t)

)]}
(r)
〉
t
. (8)

In order to express the average over time, we have no choice but to fully develop this expression, which after
some manipulations reads

h̃lec(r;ψu, ψd) =

∫∫
ψ∗d(r1)ψd(r + r1)

∫∫ ∫∫
ei2πr1·α1e−i2π(r1+r)·α2M∗(α1)M(α2)

×
∫∫ ∫∫

e−i2πr2·α1ei2πr3·α2ψ∗u(r2)ψu(r3)
〈

ei[φt(r3,t)−φt(r2,t)]
〉
t

dr3 dr2 dα2 dα1 dr1.

(9)

Following Roddier,4 we assume that turbulence is an ergodic stationary process (which is a very reasonable
assumption in the case of residual turbulence after an extreme adaptive optics system), so we write〈

ei[φt(r3,t)−φt(r2,t)]
〉
t

= e−
1
2Dφ(r3−r2), (10)

where Dφ is the turbulent phase structure function, defined by

Dφ(r) =
〈

[φt(r
′)− φt(r + r′)]

2
〉
r′
. (11)

In order to be able to separate variables r2 and r3 in Eq. (11), we take the inverse∗ Fourier transform of

e−
1
2Dφ . We denote α′ the conjugate variable of r3 − r2, and ha the inverse Fourier transform of e−

1
2Dφ , that is

ha = F−1
(

e−
1
2Dφ

)
(we will come back later to the meaning of ha).

∗Note that we take the inverse Fourier transform and not the direct Fourier transform to be consistent with the
convention to take the inverse Fourier transform when going from a pupil plane to a focal plane. However, since Dφ is
real and even, taking its direct or inverse Fourier transform yields the same result.



We obtain that

h̃lec(r;ψu, ψd, Dφ) =

∫∫
ha(α′;Dφ)

∫∫
ψ∗d(r1)

∫∫
ei2πr1·α1M∗(α1)

∫∫
e−i2πr2·α1ψ∗u(r2)e−i2πr2·α

′
dr2 dα1

× ψd(r + r1)

∫∫
e−i2π(r1+r)·α2M(α2)

∫∫
ei2πr3·α2ψu(r3)ei2πr3·α

′
dr3 dα2 dr1 dα′.

(12)

In a more compact form, this writes:

h̃lec(r;ψu, ψd, Dφ) =∫∫
ha(α′;Dφ)

{
ψd ×F

[
M×F−1

(
ψuei2πα

′·Id)
)]}
⊗
{
ψd ×F

[
M×F−1

(
ψuei2πα

′·Id)
)]}

(r) dα′.
(13)

To obtain the point spread function back from this optical transfer function, we just have to take the inverse
Fourier transform, then apply Wiener-Khintchine’s theorem again. Finally, the long exposure coronagraphic
point spread function reads

hlec(α;ψu, ψd, Dφ) =

∫∫
ha(α′;Dφ)

∣∣∣F−1 {ψd ×F [M×F−1 (ψuei2πα
′·Id
)]}

(α)
∣∣∣2 dα′. (14)

This expression gives the long exposure coronagraphic point spread function as a function of three determin-
istic parameters, namely: upstream aberrations, downstream aberrations, and residual turbulence-induced phase
structure function.

4. PHYSICAL INTERPRETATION

In order to interpret Eq. (14) physically, we can re-write it in the more compact following form :

hlec(α;ψu, ψd, Dφ) =

∫∫
ha(α′;Dφ)hc

(
α;ψuei2πα

′·Id, ψd

)
dα′, (15)

where hc

(
α;ψuei2πα

′·Id, ψd

)
is the coronagraphic point spread function of the instrument in the absence of

turbulence, but with a tilt α′ added to the upstream aberrations, that is to say with the light coming from the
star being tilted by an angle α′.

The so-called atmospheric point spread function has been defined as ha = F−1
(

e−
1
2Dφ

)
. it can be interpreted

as a probability density, giving the probability for a photon coming from space to be scattered by turbulence in
the direction 2πα′. Indeed, we have defined ha as

ha = F−1
[
exp

(
−1

2
Dφ

)]
= F−1

[〈
ei[φt(r3,t)−φt(r2,t)]

〉
t

]
. (16)

If we note ψt(r, t) = exp (iφt(r, t)) the contribution to the electric field at position r and time t by the
atmospheric turbulence, we can re-write ha as :

ha = F−1 [〈ψ∗t (r2, t)ψt(r3, t)〉t] (17)

Assuming stationarity and ergodicity, we recognize the auto-correlation of ψt in 〈ψ∗t (r2, t)ψt(r3, t)〉t. So, thanks
to Wiener-Khintchine’s theorem, we can identify ha as the energy spectral density of the turbulence-induced
complex field, which is the point spread function associated with that field :

ha =
∣∣F−1 [ψt]

∣∣2 . (18)



Finally, Eq. (15) can be interpreted as follows: the long exposure coronagraphic point spread function hlec is
a weighted sum of coronagraphic point spread functions hc, without any turbulence, but with an upstream tilt.
The weight on any of those tilted point spread functions is the probability that the atmosphere scatters light in
the direction of the corresponding tilt.

Moreover, the formula Eq. (15) separates the turbulent part and the coronagraphic part of the equation: ha
codes for the characteristics of the turbulent atmosphere, while hc codes for the characteristics of the telescope
and instrument.

5. SPECIAL CASES

5.1 Non-turbulent point spread function

In the case where there is no turbulence, ha is reduced to a Dirac distribution. Indeed, in the case where there

is no turbulence, φt is a constant, so Dφ =
〈

[φt(r
′)− φt(r + r′)]

2
〉
r′

= 0. Then

ha = F−1
[
exp

(
−1

2
Dφ

)]
= F [1] = δ. (19)

Hence, by use of Eq. (14),

hlec(α;ψu, ψd) =

∫∫
δ(α′)

∣∣∣F−1 {ψd ×F [M×F−1 (ψue−i2πα
′·Id
)]}

(α)
∣∣∣2 dα′

hlec(α;ψu, ψd) = hc(α;ψu, ψd)

hlec(α;ψu, ψd) =
∣∣F−1 {ψd ×F [M×F−1 (ψu)

]}
(α)
∣∣2 .

(20)

This is precisely the classical expression for a coronagraphic point spread function in the absence of turbulence.

5.2 Non-coronagraphic optical transfer function

If we consider a non-coronagraphic instrument, M = 1, so Eq. (14) now reads

hlec(α;ψu, ψd, Dφ) =

∫∫
ha(α′;Dφ)

∣∣∣F−1 {ψdψuei2πα
′·Id
}

(α)
∣∣∣2 dα′. (21)

Once again we take the optical transfer function and use Wiener-Khintchine’s theorem.

h̃lec(r;ψu, ψdDφ) =

∫∫
ha(α′;Dφ)

∫∫
ψ∗d(r′)ψ∗u(r′)e−i2πα

′·r′ψd(r + r′)ψu(r + r′)ei2πα
′·(r+r′) dr′ dα′

=

∫∫
ψ∗d(r′)ψ∗u(r′)ψd(r + r′)ψu(r + r′) dr′

∫∫
ha(α′;Dφ)ei2πα

′·r dα′

h̃lec(r;ψu, ψd) = ψdψu ⊗ ψdψu(r)× e−
1
2Dφ(r).

(22)

This is the classic Roddier formula4 of the long exposure transfer function for imaging through turbulence.

5.3 Approximation in the case of small turbulence

We consider the case of a telescope equipped with an extreme adaptive optics system. The residual turbulent
phase after the adaptive optics can then be seen as a small perturbation. It is straightforward to see that

1

2
Dφ(r) = σ2

φ −Aφ(r), (23)

where Aφ(r) = 〈φt(r′)φt(r + r′)〉r′ is the autocorrelation of the phase, hence

ha = e−σ
2
φF−1

[
eAφ
]
. (24)



Then, if the turbulence is small, Aφ is small compared to 1, and we can perform a first order MacLaurin
expansion:

ha(α′) ' e−σ
2
φF−1 [1 +Aφ] (α′)

ha(α′) ' e−σ
2
φδ(α′) + e−σ

2
φSφ(α′)

(25)

where Sφ is the power spectrum density of the turbulent phase φt, defined as the (inverse) Fourier transform of
Aφ. Thus we can express hlec :

hlec(α;ψu, ψd) ' e−σ
2
φ ×

[
hc(α;ψu, ψd) +

∫∫
Sφ(α′)hc

(
α;ψue

i2πα′
, ψd

)
dα′
]

(26)

This means that hlec is approximately the non-turbulent coronagraphic point spread function, with a corrective
additive term that takes into account the power spectrum density of the turbulent phase, all this dampened by

the coherent energy e−σ
2
φ

6. NUMERICAL VALIDATION AND EFFICIENCE CONSIDERATIONS

6.1 Numerical validation

To validate our point spread function model, we test it against an average of short exposure point spread
functions, each one of them with a different outcome of the residual turbulence-induced phase. Each short
exposure point spread function is computed using a matrix Fourier transform5 in order to be accurate on the
mask focal plane. A few averages of point spread functions are displayed on Fig. 2. They are simulated with a
Lyot coronagraph of extension 3λ/D, the residual turbulence of a SPHERE-like adaptive optics and upstream
and downstream white noise phase aberrations of variance 0.1 rad2.

Figure 2. Point spread functions. From left to right: average of 1, 10, 100 and 1000 exposures, and analytic long exposure.

Let us define the convergence error as follows. We denote by hlec the long exposure point spread function
using the analytic formula of Eq. (14). We denote hsseN the average of N short exposures. We define the error
as:

errN = max

(
|hsseN − hlec|

hlec

)
(27)

The division is taken pixel by pixel. We plot the evolution of the error as a function of the number of short
exposures on Fig. 3. The evolution of the error is independent of the size of the images. From this evolution,
we conclude without surprise that the average of short exposures tends to the analytical formula, with the error
evolving as N−1/2.



Figure 3. Convergence error as a function of the number of exposures (bi-logarithmic graph).

6.2 Computing cost

The evolution of the convergence error shown on Fig. 3 gives us an easy criterion to quantify the comparative
computing costs of the long exposure coronagraphic point spread function and the empirical average of short
exposures.

Let us take the computing cost of a short exposure point spread function as the unit computing cost. Then,
if we want an error of less than 10−3 on the point spread function, Fig. 3 indicates that we must perform an
average of approximately 107 short exposure point spread functions, for a cost of 107. The analytical formula for
the long exposure point spread function has a total cost of the number of points on which the phase structure
function is known. This implies that, for square images of 512× 512 pixels, our exact formula is about 38 times
less costly to evaluate than an average of short exposures.

In addition, it should be noted that, since the long exposure is an integral, and thus, in practice, a sum, it is
very easy to compute it in parallel on several processors. We made all calculations in parallel on 16 cores.

Finally, it should also be noted that a useful approximation can accelerate the computing of the long exposure
point spread function by a great deal. Indeed, when the tilt α′ is greater than the radius of the mask, the point
spread function can be well approximated by a shifted non-coronagraphic point spread function that can be
computed once and for all, so the sum in Eq. (15) for the computation of the long exposure point spread
function must actually only be computed on a square of side length typically 10λ/D. That is only 20× 20 short
exposure point spread functions.

7. APPLICATION: ESTIMATION OF QUASI-STATIC ABERRATIONS IN THE
PRESENCE OF RESIDUAL TURBULENCE WITH COFFEE

7.1 Motivation

In the context of direct exoplanet detection, during an observation from a terrestrial telescope, the quasi-static
aberrations cause light from the star to leak on the focal plane and create speckles on the scientific image.
Those speckles can be mistaken for planets, or hide planets. Hence, it is necessary to estimate and correct these
aberrations. In current systems such as SPHERE these quasi-static aberrations are only corrected during day-
time. For an upgrade, or for future high contrast instruments on extremely large telescopes, it would be useful
to correct them during the scientific acquisition. To achieve this, we combine COFFEE,1 which has already been
demonstrated on SPHERE (with an internal calibration source),6 with the long exposure phase diversity.7



7.2 Principle of COFFEE

COFFEE (for COronagraphic Focal-plane wave-Front Estimation for Exoplanet detection), consists in an exten-
sion of conventional phase diversity to a coronagraphic system: aberrations are estimated using two coronagraphic
focal-plane images, recorded from the scientific camera itself, and thus without any differential aberration. The
main idea is to find the phase that minimizes a regularized Maximum Likelihood (or Maximum A Posteriori)
criterion. This criterion is the sum of several terms. The first term is the distance of the observed focused image
to the focused image that is predicted knowing the model of image formation (this is where the phases are taken
into account). The second term is also a distance, but calculated on the diversity images (the phase parameters
are also taken into account). The other terms are regularisation terms. Mathematically, the criterion is of the
form :

J(φu, φd) =
1

2

∣∣∣∣∣∣∣∣ ifoc − αfochlec(φu, φd;Dφ) ? hdetector − βfoc
σfoc

∣∣∣∣∣∣∣∣2
+

1

2

∣∣∣∣∣∣∣∣ idiv − αdivhlec(φu + φdiv, φd;Dφ) ? hdetector − βdiv
σdiv

∣∣∣∣∣∣∣∣2 +R(φu, φd)

(28)

In this formula, foc indicates a focused image, div a diversity image, i is the image on the detector, α the
light flux, hlec the point spread function of the telescope taking turbulence into account, hdetector the impulse
response of the detector, β the background, σ the standard deviation of the noise, R a regularisation term, and
φdiv the known diversity phase.

The two first terms represent the fidelity to data. The last term represents a priori information on the phases.

7.3 Simulation results

For a preliminary validation, we have made a reconstruction on simulated data. The parameters of the simulation
were the following :
The phase images size was 64 × 64 pixels, the incoming flux was 109 photoelectrons, the standard deviation of
the readout noise was 1 electron, the wavelength 1589 nm, the phase structure function is typical of the residual
turbulence of the extreme adaptive optics system of the SPHERE instrument of the VLT, the coronagraph is
a Roddier & Roddier phase mask, and there are no downstream aberrations. The upstream aberration is 50
nm RMS. Figure 4 shows the true upstream aberrations, the estimated upstream aberrations, and the difference
between the upstream aberration and the estimated aberration. The error is in this case about 1.4 nm RMS.

Figure 4. Left: upstream aberrations that we aim to reconstruct. Middle : reconstructed aberration. Right : difference,
magnified ten times.



However, the usefulness of this reconstruction is even better than what the reconstruction error suggests.
Indeed, let us consider the Fourier transform of the difference, as displayed on figure 5. We notice that the error
is mainly located on the spatial frequencies that are on the border of the image, that is to say, those that are
not corrected by the deformable mirror. If we take into account only the error on the corrected zone, the error
drops to less than 0.35 nm RMS.

Figure 5. Spectral representation of the reconstruction error

8. CONCLUSION

We have derived an analytical expression to model image formation for a coronagraphic telescope through the
residual turbulence of an extreme adaptive optics system. This model is general for any coronagraphic mask. It
has a physical meaning: it separates between the atmospheric contribution and the contribution of the instrument,
and can be seen as a plane wave decomposition. It is computationally effective, allowing a time gain of at least
an order of magnitude on standard sized images. Lastly, we have shown that it can be used for the online
measurement and correction of aberrations in the context of ground-based direct exoplanet detection.
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