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ABSTRACT

We present a new method based on a maximum likelihood (ML) estimation of the sub-pixel shift between images of a given object observed
with a single instrument. We first study the case of two noisy images and give the ML approach of the registration problem. By means of
simulations, we show the gain obtained with this ML solution compared to a classical registration method with an academic noise model
(stationary white Gaussian), and then demonstrate the relevance of this ML estimation with a more realistic noise model. We then address the
problem of a sequence of low signal frames of the same object. We develop a joint ML approach in which we simultaneously estimate the
reference (i.e. the noiseless) image and the shift parameters. The registration accuracy is increased at low photon levels as the number of frames
grows, reaching the sub-pixel domain at very low SNR (about 1), when considering 100 frames. When applied to experimental data (thermal
IR images of a faint galaxy), both ML methods show their efficiency to recover the resolution in averaged frames and totally outperform the
classical cross-correlation.

Key words. techniques: image processing – instrumentation: adaptive optics – galaxies: individual: Arp 220

1. Introduction

Image registration at the level of a pixel or less is a common
problem in many domains, and the number of developed meth-
ods makes it a full-fledged research field (see Brown 1992;
and Zitová & Flusser 2003). Nevertheless, there is no uni-
versal solution as the method to use strongly depends on the
nature of the transformation between the images to be reg-
istered. Registration for medical imaging is probably one of
the most diversified fields, with many different types of prob-
lems (multi-modal, 3D or stereoscopic imaging for instance),
for which different methods have been developed in each case
(see Maurer & Fitzpatrick 1993; and Maintz & Viergever 1998,
for a review). In this paper we focus on the problem of shifted
noisy Nyquist-sampled images of the same object observed
with the same instrument. Hence, following the general classi-
fication (Zitová & Flusser 2003; Roche et al. 2000) of registra-
tion methods, we propose a new area-based (or intensity-based)
technique for image registration. The most popular method
used in this case is the cross-correlation (CC) between the
images (see e.g. Brown 1992; and Zitová & Flusser 2003,
and references therein for a review). If the sub-pixel accu-
racy is required, interpolation of the CC function around its

� Based on observations collected at the ESO/Paranal YEPUN tele-
scope, Proposal 70.B-0307(A).

maximum is needed. Many interpolation methods have been
tested which have different robustness and accuracy depend-
ing on the noise nature and intensity (see Roche et al. 2000;
Zitová & Flusser 2003). For instance, in the case of under-
sampled frames, Carfantan & Rougé (2001) have studied dif-
ferent methods to find an unbiased estimation of the sub-pixel
shift between two images, and conclude that only the interpo-
lation of the CC function by a cardinal sine does not give a
biased estimation. A similar approach is to compute the CC
of images after oversampling them (with a cardinal sine or a
cubic interpolation for instance). The accuracy of the method
depends on the interpolation function. The latter approach is
the most used method in astronomy when the images are at
least Nyquist-sampled (see e.g. the registration method in-
cluded in the IDL astro-Lib package from NASA). A classical
method also used for astronomical images is the Drizzle algo-
rithm (Fruchter & Hook 2002), developed for under-sampled
HST images, which corrects for misregistration as well as for
rotation and distortions. The correction for translation is also
based on the CC of the interpolated images and thus suffers
from the same limitations: explicit re-sampling and no precise
noise model taken into account.

Some authors have proposed registration as a Maximum
Likelihood (hereafter ML) problem (Mort & Srinath 1988;
Costa et al. 1993), and Roche et al. (2000) have developed a
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Fig. 1. Scheme describing the formation of an image. The sampling is assumed to verify the Nyquist-Shannon theorem.

general approach for registration problems using a ML formal-
ism. The particular case of two images obtained with the same
instrument is not studied because the main issue of their paper
is the registration of images acquired under different observ-
ing conditions. Closer to our study, in the case of a sequence
of translated Poisson limited Nyquist sampled images of the
same object, a joint ML method has been developed to restore
the reference image and the shift parameters of the sequence
simultaneously (Guillaume et al. 1998).

The registration problem also occurs when collecting sev-
eral short exposure images under weak turbulent conditions.
Indeed, under such conditions, the effect of turbulence is
mainly a tip-tilt on the wavefront and thus a translation of
the images. This problem is addressed in the seminal paper of
Snyder & Schulz (1990), in which they describe the EM algo-
rithm they used to restore a high resolution image from a se-
quence of translated short exposures. This work and the work
of Guillaume et al. (1998) are dedicated to extremely low pho-
ton levels (a few photons per image) whereas we consider im-
ages with a few photons per pixel corrupted by background
and detector noise. With the greater photon level we consider,
we aim at sub-pixel accuracy even when the object flux is
comparable to the noise variance (detector+background noise).
Moreover, when the problem allows such an approach, con-
jugate gradient algorithms are usually recognised to be faster
than EM.

Some authors have also considered registration as part
of a more global restoration problem, and propose ML ap-
proaches, depending on the images properties and the nature
of the transformation, and including the registration problem.
Recently, Girémus & Carfantan (2003) have developed a multi-
frame deconvolution algorithm, for which sub-pixel accuracy
is required, and propose a joint ML estimator of the images
and the shift parameters, but only in the case of stationary
white Gaussian noise. They note that in the case of low SNR,
the ML method for the estimation of the shift parameters
gives more accurate results than classical empirical estimators.
However, if we consider a PSF almost constant in time, as in
the case of adaptive optics (hereafter AO) observations, no gain
is expected by jointly registering and restoring as demonstrated
by Girémus & Carfantan (2003). It is obviously less costly to

register first all the frames and then deconvolved the average
(long exposure) image.

This paper is organized as follows. We first describe our im-
age model and introduce the ML formalism in the simple case
of registering two images. We test our method with simulated
images, in the case of stationary white Gaussian noise as well
as with a more realistic mixture of Poissonian and stationary
Gaussian noise. In Sect. 3, we address the problem of register-
ing a sequence of images and develop a joint maximum likeli-
hood approach to estimate simultaneously the shift parameters
and the reference image. We then demonstrate the efficiency
of this method with simulated images. In Sect. 4, we use var-
ious methods to register very noisy images of a distant galaxy
acquired with an AO system in the thermal infrared and we
compare the results. We conclude in the last section.

2. Description of the method

2.1. Data model

In the following, we use a one dimensional development for
clarity. This section aims at presenting the context from which
we naturally introduce the ML approach. The simplest statisti-
cal model of the data is obtained when one of the two images
is considered to be noiseless, and the other one is a shifted and
noisy version of the former. An illustration of this scheme is
presented in Fig. 1.

We consider an object O(x) seen through an instru-
ment of known PSF H(x). The latter includes the effect
of the propagating medium, the telescope and the detector.
Assuming no detection noise, a reference image is then R(k) =
[R(x)]x(k) = [O(x) ∗ H(x)]x(k), where x is the sampling
operator, [R(x)]x(k) is the kth sample of the function R(x)
and ∗ the convolution operator. We will assume that the sam-
pling process respects the Shannon-Nyquist criterion, meaning
that the highest spatial frequency in the image is at most half
the sampling frequency. This implies that a continuous ver-
sion of the image can be reconstructed via the Shannon recon-
struction theorem. A shifted and noisy version of the reference
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(acquired with a finite exposure time after jittering the tele-
scope), is then written:

I1(k) = [R(x) ∗ δ(x − x1)]x(k) + N1(k)

= [R(x − x1) ×x(x)] (k) + N1(k)

where x1 is the shift parameter and N1 an additive noise.

2.2. Gaussian noise – formulation of the pairwise
ML approach

In this section, we present the standard ML formulation of the
registration problem in the image formation scheme described
above. We will name this approach pairwise ML, as we process
pairs of images, to distinguish this method from the one devel-
oped in Sect. 3. If we assume a Gaussian additive noise, the
likelihood of observing an image I1(k) for the reference (noise-
less image) R(x) and for the hypothesis x1 is given by:

L
(
I1(k); R(x), x1

)
∝
∏

k

e

(
− 1

2σ2
1(k)

∣∣∣I1(k)−[R(x−x1)]x(k)
∣∣∣2)

whereσ2
1 is a map of the noise variance (see for instance Sect. 3

in Van Trees 1968). The negative log-likelihood is then:

J(x1) =
∑

k

1

2σ2
1(k)

∣∣∣I1(k) − [R(x − x1)]x(k)
∣∣∣2 (1)

and the ML estimate x̂1ML of the shift between the two images
is given by minimizing numericallyJ(x1) by, e.g., a conjugate
gradient method.

2.2.1. Stationary white Gaussian noise:
the cross-correlation

If the noise is additionally stationary, which is for instance ap-
proximatively the case for background dominated noise if the
background is uniform (thermal IR observations for instance)
or for low photon level images dominated by detector noise,
the pairwise ML solution of the registration problem is known
to be the maximum of the cross-correlation between the two
images, assuming their periodicity (see Appendix A).

The formulation of the registration in a ML framework sug-
gests an implementation of the solution that can be arbitrar-
ily sub-pixel without any explicit resampling of the images,
and which turns out to be more precise than readily available
(IDL astro library, for instance) code, as shown in next section.

2.2.2. Generalization to non-stationary Gaussian
noise

We now consider a more realistic noise model describing as-
tronomical observations in the infrared. In this framework, the
global noise on the images can be decomposed in two compo-
nents: a Poisson distributed noise due to the detection process
(object + background) and a Gaussian distributed noise due
to the CCD electronics. This case has been previously stud-
ied in Snyder et al. (1995), where a sophisticated noise model
is considered. In their paper, the distribution of the mixture

of Gaussian and Poissonian noises is either approximated by
a Poissonian distribution or computed numerically using the
saddle point method. The performance of the image restoration
ML criteria deduced from this two distributions are very close
which demonstrates the robustness of the Poissonian approxi-
mation in their study (image reconstruction using one image of
the object).

In our study, we use the alternative approach of approx-
imating our mixed noise as non-stationary white Gaussian.
Actually, in the case of astronomical infrared imaging, the level
of the IR background is comparable to the photon flux of the
observed object and is typically over a thousand photons per
pixel. We are thus working at high background level and the
IR background noise distribution is well approximated by a
Gaussian. After background subtraction the noise variance is
doubled, and the photon level on the object is of the order of a
few photons per pixel (more than the variance of the detector
noise, i.e. typically more than ten for nowaday’s detectors).

In the case described above, the global noise variance can
be estimated directly from the images as in Mugnier et al.
(2004). The variance of the detector component is estimated
beforehand, on a so-called dark image, and the photon noise
variance is estimated as:

σ2
ph(k) = max[I(k), 0].

We obtain the pairwise ML solution of the shift by minimizing
numerically the criterion of Eq. (1) (and the periodic assump-
tion is no longer needed). With a map of the noise variance,
estimated as just described, the ML estimation of the shifts is
easier than in the study of Snyder & Schulz (1990) in which the
noise variance and the shifts are estimated simultaneously.

2.2.3. Generalization to an unknown reference

In practice, the noiseless reference R is not available. Instead,
let us now consider a noisy frame I0:

I0(k) = [R(x)]x + N0(k)

assumed to be a noisy version of the reference. A shifted noisy
image I1 can be written:

I1(k) = [R(x) ∗ δ(x − x1)]x + N1(k)

= [I0(x) ∗ δ(x − x1)]x + N(k)

where: N(k) = N1(k) − [N0(x) ∗ δ(x − x1)]x. If we assume N0

as a Gaussian distribution of variance σ2
0(x) and N1 the noise

of the same detector, then we have: σ2
0(x) ∗ δ(x − x1) = σ2

1(x).
As the noise variance of I1 is estimated on the image, and

that σ2
0(x) is deduced from this estimation, the noise variance

is estimated before the minimization of J(x1) and thus no
more depends on the shift parameters. The neg-log-likelihood
to be minimized has so the same expression as in Eq. (1)
changing R(x) into I0(x) and σ2

1(k) into σ2(k) = σ2
1(k) +[

σ2
0(x) ∗ δ(x − x1)

]
x = 2σ2

1(k):

J(x1) =
∑

k

1

4σ2
1(k)

∣∣∣I1(k) − [I0(x − x1)]x
∣∣∣2. (2)



360 D. Gratadour et al.: Sub-pixel image registration with a ML estimator

Fig. 2. Top: performance of the IDL astro-Lib registration method in
the case of purely Gaussian additive noise compared to the CC we
implemented. Bottom: respective error of each method in the same
conditions, solid line, the pairwise ML method, dotted line, the clas-
sical cross-correlation method we implemented. The variance of the
Gaussian noise is kept a constant at 100, while the number of photons
max per pixel in the initial images ranged from 10 to 105.

We see that even if the 2 images are noisy, one of them can still
serve as a reference for the other and that the ML solution just
derived is still valid (see Fig. 3).

2.3. Implementation and validation with simulated
images

In order to compare our method to commonly used ones in
this kind of registration problems, we implemented (in IDL)
the minimization of the criterion of Eq. (1). We compared it
to an easy-to-implement cross-correlation method which con-
sists of a discrete computation of the CC function followed by
a fit of the latter around its maximum by a continuous func-
tion. We chose a Gaussian over a second order polynomial
to fit the CC function, in a 2 × 2 pixel box around its maxi-
mum. When compared to a classical image interpolation-based
method (the one included in the IDL astro-library for instance)
this CC method is obviously less time consuming and has bet-
ter performance (see Fig. 2 top). This CC method thus seems
a robust and fast member of the classical CC methods family
and so is a relevant test competitor to compare to our pairwise
ML method.

Fig. 3. Performance of the pairwise ML method in the case of
mixed (stationary Gaussian + Poissonian) noise. The variance of the
Gaussian noise is kept constant to 100, while the max number of
photons per pixel in each image ranges from 10 to 105. Solid line:
the ML method considering the noise variance map, dotted line: the
ML method considering a constant variance. Top, the academic case
of a known reference and bottom, the realistic case of an unknown
one.

If the images are Nyquist sampled, the Fourier trans-
forms (FT) of the sampled images coincide with the FT of the
continuous images within [− νs2 , νs2 ] where νs is the sampling
frequency. Therefore, we are able to reconstruct a sub-pixel
shifted version of any Nyquist sampled image, by multiplying
the phase of the FT of this image by a tilt whose slope is a non
integer number. In practice, we used the Fast FT (FFT) algo-
rithm to make the computation faster. This algorithm computes
a Discrete FT (DFT) which represents a small approximation.
In order to remove noise and to reduce the effect of this approx-
imation at high frequencies, we have found it useful to low-pass
filter the noisy reference before applying the above-mentioned
tilt to its phase. The cut-off is chosen to equal the diffraction
cut-off frequency of the telescope, so that only noise is removed
from this image. The criterion is then implemented as:

J(x1) =∑
k

1

4σ2
1(k)

∣∣∣∣I1(k) − F −1
[
Ĩ0(u) × Πuc (u) × e−2iπux1

]∣∣∣∣2 (3)
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where F −1 denotes the inverse FFT, Ĩ denotes the FT of an
image, x1 a real number and Πuc (u) is the low-pass mask in the
Fourier domain.

We consider an object that we convolve by a perfect PSF
(i.e. the PSF of a perfect telescope without aberrations of turbu-
lence). We then build series of 100 identical images randomly
shifted, with a uniform distribution of shift parameters, in each
direction. The maximum shift value is 1 since we want to test
the sub-pixel accuracy. Moreover, the integer part of the shift
parameters can usually be retrieved from the files headers when
the shift is induced by a jitter of the instrument. These 100 im-
ages can then be corrupted by noise.

2.3.1. Pure stationary Gaussian noise

In this case we consider only detector noise: Gaussian sta-
tionary noise is added to each image with a constant variance
of 100, which is typical of current AO equipped cameras (e.g.
NAOS/CONICA). We then build 5 series of 100 images, in-
creasing the maximum number of photons per pixel in each
series, i.e. increasing the SNR. Each series is then registered
with the three methods (astro-lib, CC and pairwise ML). The
reference is taken as one image in each series, so we are in the
realistic case of an unknown reference.

The results presented in Fig. 2 bottom demonstrate that,
more than being intrinsically sub-pixel, our method exhibits
an increase in accuracy with SNR in the images. The perfor-
mance of the interpolated cross-correlation obviously depends
on the interpolation method, and the robust one we used sat-
urates close to 0.3 pixel accuracy. We see here that the in-
terpolation method we used, in the sub-pixel regime appears
equivalent to oversampling the images by a factor of 3 or
more, as usually done (in IDL astro-Lib registration code, for
instance). Nevertheless, none of the two interpolation-based
CC method is able to do better than 0.1 pixel whereas the pro-
posed ML method’s accuracy is approximatively inversely pro-
portional to the maximum number of photons per pixel.

We have hence demonstrated the efficiency of our sub-pixel
method to register very noisy frames, in the classical case of
stationary white Gaussian noise, and considering a noisy image
as a reference. We reach the pixel accuracy as the maximum
number of photon per pixel is comparable to the variance of
the Gaussian noise and can go down to the thousandth of pixel
at very high photon levels (105), which completely outperforms
the classical cross-correlation method and its refinements.

2.3.2. Mixture of Gaussian and Poissonian noise

The method has also been tested with a more realistic noise
model. The same shifted series of a reference object convolved
by a PSF is first corrupted by Poissonian noise. We then add
Gaussian stationary noise with a constant variance of 100. The
total variance of the noise is then the shifted reference image
(object convolved by the PSF and shifted) plus a constant for
the Gaussian noise. We tested the method on 5 series of im-
ages with a maximum number of photons per pixel ranging
from 10 to 105. We present the results in Fig. 3, in the case

of known (i.e. a non noisy image of the sequence) and un-
known reference (i.e. a noisy image of the sequence) of the
ML method. Two methods are tested in each case, one con-
sidering a noise variance map, and one considering a constant
variance. The aim of this more realistic modeling of the noise
is, firstly, to validate the method in the case of a more sophisti-
cated noise model, and secondly to prove the efficiency of the
exact knowledge of the noise distribution. We see that in both
cases (known and unknown reference), introducing a map of
the noise variance slightly increases the accuracy as the max
number of photon per pixel (Nphot) reaches a reasonable value.
Indeed, until the max number of photon per pixel is signifi-
cantly greater than the variance of the detector noise, the total
noise variance can be considered as constant, and the accuracy
of the two methods is the same. Moreover, in the realistic case
of an unknown reference, the advantage of using a true vari-
ance is lessened. Finally, we note that the accuracy depends
on the SNR. Two regimes appear: at low photon level (detector
dominated noise, SNR ∝ Nphot), the accuracy is proportional
to the inverse of Nphot; at high photon level (photon limited
noise, SNR ∝ N1/2

phot the accuracy is proportional to the inverse
of the square of Nphot. As expected, the transition between the
two regimes is smoother in the academic case of the known
reference.

3. Sequences of images: the Joint ML approach

In this section, we address the problem of registering several
(more than 2) images. Actually, it is very rare to have only a
couple of noisy images of an object, and the general case is
to have a sequence of many images. Intuitively, one should so
be able to obtain a better estimation of the shift parameters be-
tween images if considering all the sequence. This approach is
similar to what was developed by Guillaume et al. (1998) in
the case of pure photon noise. We propose here a joint version
of our ML registration, in order to estimate simultaneously the
non noisy reference image and the shift parameters between the
images.

3.1. Joint estimation of the reference and the shift
parameters

We consider a series of images {I j(k)} randomly shifted. If we
try to find simultaneously the shift parameters {x j} and the ref-
erence image R(x), then the joint likelihood can be written as:

L
(
{I j(k)}; R(x), {x j}

)
∝

∏
m

∏
k

exp

(
− 1

2σ2
m(k)

∣∣∣Im(k) −
[
R ∗ δ(x − xm)

]
x(k)

∣∣∣2
)
. (4)

And, the neg-log-likelihood to be minimized is then:

J
(
{I j(k)}; R(x), {µ j}

)
=

∑
m

∑
k

1
2σ2

m(k)

∣∣∣Im(k) −
[
R ∗ δ(x − xm)

]
x(k)

∣∣∣2. (5)
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3.2. The joint ML estimate of the reference image

Following the approach of Guillaume et al. (1998), canceling
this joint criterion with respect to the reference gives an an-
alytical expression of a reference estimate that minimizes the
criterion for a given set of {x j} (see Appendix A):

R̂ML(k, {(xm)}) = 1
Nimages

∑
m

[Im(x) ∗ δ(x + xm)]x(k). (6)

This is a quite intuitive result, as it is nothing but the average of
the shifted-back images. This result is the same as the one ob-
tained by Guillaume et al. (1998) in the case of photon limited
data. The criterion obtained by substituting R by its ML esti-
mation R̂ML depends only on the shifts parameters. Therefore,
the criterion to be minimized is given by:

J
(
{I j(k)}; R̂ML(k), {x j}

)
=

∑
m

∑
k

∣∣∣Im(k) −
[
R̂ML(x) ∗ δ(x − xm)

]
x

(k)
∣∣∣2

2σ2
m(k)

· (7)

Additionally, as shown by Blanc et al. (2003), assuming a
Gaussian distribution for the object and the noise, we have:

J
(
{I j(k)}; R̂ML(k), {x j}

)
=

∑
m

∑
k

∣∣∣Im(k) −
[
R̂ML(x) ∗ δ(x − xm)

]
x

(k)
∣∣∣2

2σ2
m(k)

+K (8)

where K is a corrective term depending on the square modu-
lus of the transfer function H and the object and noise power
spectral density. This term is constant in our problem, as we
consider that the PSF is the same for all images. The solution
of the joint estimator proposed can thus be interpreted as true
ML solution of the sole shifts provided the prior distribution of
the object is Gaussian.

3.3. Implementation and validation with simulated
images

The criterion of Eq. (8) is implemented and minimized as in
the previous case:

J
(
{I j(k)}; R̂ML(k), { j}

)
=

∑
m

∑
k

1
2σ2

m(k)

∣∣∣∣∣Im(k) − F −1
[ ˜̂RML(u) × Πuc (u)e−2iπ(ux1)

]∣∣∣∣∣
2

(9)

where R̂ML is given in Eq. (7) and Πuc (u) is the low-pass
mask in the Fourier domain cutting at the telescope cutoff fre-
quency uc, the same as the one used in the pairwise ML case.
We performed the same kind of simulations as described pre-
viously. We compared the pairwise ML algorithm (ML× 2)
described in Sect. 2 and the joint estimate with 10 groups of
10 images (ML× 10) and 1 group of 100 images (ML× 100).
We plotted the average root-mean-square error in each direc-
tion for the whole sequence against the max number of pho-
tons per pixel in an image. At low photon levels, we see that
increasing the number of frames increases the accuracy of the

Fig. 4. Performance of the joint estimator compared to the pairwise
ML estimator, in the case of mixed (additive Gaussian+Poissonian)
noise. The variance of the Gaussian noise is constant: σ2

gauss =

100 photons. The number of photons max per pixel ranges from 10
to 105.

shift estimation. Actually, we reach a sub-pixel accuracy when
the max number of photon per pixel in the image is compara-
ble to the detector noise in the case of a group of 100 images.
This has great interest in infrared astronomical imaging where
the number of images is usually huge and the SNR is very poor.
Note that in the case of a group of 100 images, as expected,
the performance are very close to the case of a known refer-
ence since the large number of images allows us to retrieve an
almost noiseless estimate of the reference.

4. Application to infrared astronomical images:
first images of Arp 220 in the L-band
with adaptive optics

In order to evaluate the performance of our method in a
real case, we recorded a sequence of images of a very faint
galaxy. Arp 220 is a typical Ultra-Luminous Infrared Galaxy,
caracterised by a very powerful emission in the infrared
bands but a very faint counterpart at visible wavelengths.
Observation of such a galaxy is a challenge as its distance to
earth impose high angular resolution imaging in the infrared.
NACO (NAOS+CONICA) at the VLT is the only AO system
that can servo on infrared sources and thus achieve diffrac-
tion limited images of such galaxies in the infrared with a
large ground-based telescope (Rousset et al. 2003; Lagrange
et al. 2003). A series of 85 images of this galaxy has been ac-
quired in the L′ band (3.8 µm) with this instrument in March
2003. While the background dynamics of each image is around
80 000 photons per pixel before sky subtraction, the maximum
level on the source is around 100 photons per pixel which is
comparable to the total variance of the background after sky
subtraction. We are here in the case where the CC was not effi-
cient enough to ensure good registration (accuracy poorer than
a pixel). One elementary frame is presented in Fig. 5 as well as
the 85 registered and averages frames using the three methods
(interpolated cross-correlation, pairwise ML and joint ML. The
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Fig. 5. Adaptive optics image of ARP 220 in the L-band with NACO at VLT. Top left: elementary frame, top right: 85 frames registered with
a classical cross-correlation method and averaged; bottom left: 85 frames registered with the pairwise ML method and averaged; bottom right:
85 frames registered with the joint ML method and averaged. We chose a log-scale representation to ensure a good contrast for all structures in
the image. The color distribution is kept constant for all averaged images to ensure comparison.

obtained Strehl ratio ranged from 0.1 to 0.15 at 2.2 µm during
the observations meaning 0.25 at L′.

As obvious in Fig. 5, the images registered with ML meth-
ods are better defined than the one obtained with CC. The
brightest source intensity is enhanced and it exhibits a clear
East-West elongation. Moreover, in the case of the joint ML, it
appears slightly bent, similar to the crescent nucleus observed
with HST at 2.2 µm (Scoville et al. 1998). The surrounding
structures show also more details with a clear double-arm pat-
tern linking the two secondary sources to the brightest elon-
gated source which was not obvious on the CC registered im-
age, and globally, the joint ML method gives slightly sharper
results than the pairwise method.

The comparison of the circular mean of the Fourier trans-
forms of each image is displayed in the left part of Fig. 6 and
shows more quantitatively the improvement obtained with both
ML methods. High spatial frequencies are enhanced especially
in the range 0.1 to 0.4 (in units of the cutting frequency of the
telescope) compared to the CC method. The improvement ob-
tained with the joint ML compared to the pairwise is also visi-
ble just below and around frequency 0.1.

The previous L-band images, obtained without adaptive op-
tics on a 10-m class telescope (Soifer et al. 1999) are similar
to the result obtain with CC registration. The super-imposition

of the contour of their study on our image is presented on the
right side of Fig. 6 (inset A). In their image, neither the two
secondary sources nor the double-arm pattern were clearly de-
fined. Clearly, the details we now obtain with the ML methods
at 3.8 µm allow a more precise study of the secondary struc-
tures and their link to the brightest source. Precise photometry
of these sources are now possible and can be compared to the
same pattern found by HST at 2.2 µm and by Keck 12 µm as
shown in insets B and C of Fig. 6. Very preliminary morpho-
logical interpretations were presented in Gratadour et al. (2003)
and a precise photometric study including AO observations at
2.2 µm as well as more a refined interpretation will be presented
in a future paper in preparation.

5. Conclusion

In this paper, we have formulated and tested by means of sim-
ulations a ML approach for the registration of shifted images
of the same object observed with a single instrument. We have
studied the performance of this method as a function of the
SNR of the images. We have then demonstrated the efficiency
of our ML method to register two noisy images at a sub-pixel
accuracy, even when the signal is very low.

In order to obtain a higher accuracy when registering a large
amount of very noisy elementary frames, we developed and
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Fig. 6. Left: circular means of the Fourier transforms of the final images obtained with the cross-correlation (CC), the pairwise ML (ML× 2) and
the joint ML (ML×85) methods. Right: super-imposition of our joint ML image with contours at other wavelengths: A, 3.8 µm with Keck, B,
2.2 µm with HST and C, 12 µm with Keck.

tested a joint ML approach which estimates simultaneously the
reference image and the shift parameters between the frames.
By deriving analytically the ML solution for the reference im-
age, we obtain a criterion depending on the sole shift parame-
ters which allows a fast and precise minimization. We demon-
strated the efficiency of this joint ML estimate at low SNRs, and
noted the similarity between this joint ML method and that of
the pairwise ML at high SNRs. Finally, we registered experi-
mental astronomical images of a faint galaxy and showed the
ability of our ML approach to preserve the resolution obtained
in each elementary images thanks to the AO after averaging all
the frames.

Appendix A: The ML solution in the case
of stationary white Gaussian noise

In this appendix, we recall how, with a mild assumption (peri-
odicity of the images), in the case of stationary white Gaussian
noise, the pairwise ML solution of the registration problem is
the maximum of the cross-correlation. Indeed, an analytical ex-
pression of the gradient of the negative log-likelihood J with
respect to x1, assuming σ1 is a constant, is given by:

∇x1J(x1) ∝
∑

k

[
I1(k) − [R(x − x1)]x(k)

][
∂

∂x1
[R(x − x1)]x(k)

]
.

Under the assumption that the reference is periodic or not trun-
cated (i.e. an object surrounded by a dark background larger

than the largest possible shift):
∑

k

∣∣∣∣[R]x(k)
∣∣∣∣
2
= const. we

have:

∑
k

{
∂

∂x1
[R(x − x1)]x(k)

}
[R(x − x1)]x(k) = 0

and, nulling ∇x1J(x1) is then equivalent to solving

∑
k

{
∂

∂x1
[R(x − x1)]x(k)

}
I1(k) = 0

i.e., to find the maximum of:

C(I1,R) =
∑

k

I1(k)[R(x − x1)]x(k) (A.1)

which is nothing but the linear cross-correlation function of the
image and the reference.

Appendix B: The ML estimation of the reference
in the joint ML case

In this appendix, we derive the analytical expression of the
ML estimate of the reference in the joint ML approach by
derivating the joint ML criterion with respect to the reference.
We recall the expression of the joint ML criterion:

J
(
{I j(k)}; R(k), {x j}

)
=

∑
m

∑
k

∣∣∣Im(k) −
[
R(x) ∗ δ(x − xm)

]
x

(k)
∣∣∣2

2σ2
m(k)

·

The maximum likelihood estimate R̂ML(x) of the reference im-
age, is obtained by nulling ∀l:

∂

∂R(l)
J
(
{I j(k)}; R(x), {x j}

)
=

∂

∂R(l)

∑
m

∑
k

1
2σ2

m(k)

∣∣∣Im(k) − [R ∗ δ(x − xm)]x (k)
∣∣∣2.
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If we consider Nyquist sampled images then we can write:

R(x) =
∑
n∈Z

sinc (x − n)R(n) (B.1)

and:

[R(x)]x(k) = R(x) × δ(x − k)

and:
[
R(x) ∗ δ(x − xm)

]
x(k) =

∑
n∈Z

sinc (k − xm − n)R(n)

so:

∂

∂R(l)

[
R(x) ∗ δ(x − xm)

]
x(k) = sinc (k − xm − l).

Then, we have:

∂

∂R(l)
J
(
{I j(k)}; R(x), {x j}

)
=

∑
m

∑
k

−1
σ2

m(k)
sinc (k − xm − l)

[
Im(k)−

[
R(x) ∗ δ(x − xm)

]
x(k)

]
.

We see that:
∑

k

1
σ2

m(k)
sinc (k − xm − l)Im(k) =

∑
k

1
σ2

m(k)
sinc (l + xm − k)Im(k) =

[
Im(x + xm)
σ2

m(x + xm)

]
x

(l)

and, assuming that R is Nyquist sampled,

∑
k

[R(x − xm)]x(k)
σ2

m(k)
sinc (k − xm − l) =

[
R(x)

σ2
m(x + xm)

]
x

(l).

So we see that ∀l:

∂

∂R(l)
J
(
{I j(k)}; R(x), {x j}

)
= 0⇔

∑
m

[
Im(x + xm)
σ2

m(x + xm)

]
x

(l) =
∑

m

[
R(x)

σ2
m(x + xm)

]
x

(l).

As argued in Sect. 2.2.3 σ2
m(x) ∗ δ(x − xm) = σ2

n(x) ∗ δ(x − xn).
Then, we can write:
∑

m

[Im(x + xm)]x =
∑

m

[R(x)]x

and so:

R̂ML(k) =
1

Nimages

∑
m

[Im(x) ∗ δ(x + xm)]x(k). (B.2)

Minimizing

J
(
{I j(k)}; R(x), {x j}

)

on R(x) and {x j} is equivalent to minimize:

J
(
{I j(k)},R(k) = R̂ML(k); {x j}

)

on {x j} only as discussed in Sect. 3.2.
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