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ABSTRACT

Phase Diversity is a focal-plane technique which is chromatic by nature. The use of a monochromatic
model on wide-band imaging results of an additional error function of the spectral range. We present here a
second order modeling of the focal plane wave-front sensing error due to wide-band imaging and propose
a first order correction by inverse problem and the first results of an end-to-end simulation for an iterative
correction. Simulation results of 20 nm wave-front aberrations show that the reconstruction error decreases
from 10 nm with classical focal-plane sensor to sub-nanometric error with optimal correction at Δλ =
500 nm.
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1. INTRODUCTION

Focal-plane sensor is widely used in astronomical observations systems nowadays. It allows accurate
measurement of static or quasi-static aberrations of optical systems down to the scientific detector itself. In
particular, such kind of techniques are essential for high contrast imaging applications in which nanometric
accuracies are required. Phase Diversity [PD] is a powerful focal plane technique which uses several (at
least 2) images linked together with known aberrations (most often defocus) and allows an unambiguous
phase estimation.1, 2 Such a technique has already been successfully applied for NAOS 3, 4 and SPHERE.5 In
addition to its good noise propagation properties and its ability to work on extended (not to say very exten-
ded) objects, one of the main interest of PD is its simplicity of optomechanical implementation. However,
the use of wide-band imaging, in order to enhance SNR, leads to a dramatic increase of the algorithm
complexity. Hence, in most cases, we use wide-band imaging with monochromatic image formation. This
leads to approximations in PSF model which are known to be a major limitation as soon as the spectral
resolution (R = λ/Δλ) becomes smaller than a few tens.

We propose in this paper a simple and efficient approach to overcome this limitation and to make
monochromatic Phase Diversity work on wide spectral bandwidth images. The principle of Phase Diversity,
its limitations and the quantification of the chromatic errors are detailed in Section 2. We propose in the
third section a comprehensive modeling of the wide spectral bandwidth measurement errors using a second
order expansion. Using this simplified approximation, we therefore propose a first order correction scheme
which allows us to largely compensate for the chromatic error up to a sub-nanometric level even for very
large bandwidths (R � 1).

2. PHASE DIVERSITY

2.1 Principle and monochromatic model

Any focal-plane technique is based on the resolution of inverse problem which consist to estimate a
corrugated phase from a focal-plane image. One of the major difficulties during phase estimation is the
non-unicity of the solution.1 This indetermination is due to the particular relation between the OTF (Op-
tical Transfert Function) and the phase in the pupil. When we project the phase on the basis of Zernike
polynomials, this indetermination leads to an ambiguity on the global sign of even radial order modes. In
order to remove indetermination during phase estimation, phase diversity technique uses several images
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FIG. 1. Phase Diversity principle

related by perfectly known phase relations. The first image i f is acquired in the focal-plane of the opti-
cal system and the second image id in a slightly defocused plane with a known defocus distance d (see
Figure 1).

In the following, all the images are simulated with a point source, without noise. In this particular
case one may identify the image with the system PSF(point spread fonction) and are well described by the
following relations :

hf =|FT−1(P(r)eiφ(r))|2 (2.1)

hd =|FT−1(P(r)ei(φ(r)+φd(r)))|2 (2.2)

where hf and hd are the respective PSF, r for the variable position in the pupil plane, i =
√−1, φ(r) is the

aberration function to estimated and φd is the known phase diversity. The inverse fourier transform, FT−1

is defined by the relation :

FT−1 (P) (ν) =
∫∫ −∞

−∞
P(r)e−2iπ νr

λf dr (2.3)

In the following, the phase is well described by its decomposition on Zernike Basis.

φ(r) =
N∑

k=1

akZk(r) (2.4)

where Zk(r) are the Zernike polynomials with Z1 being the piston, Z2 Z3 being the Tip / Tilt and ak being
the coefficient of the kth mode.

a is the lexicographical vector gathering all the ak coefficients. The phase estimation is then performed
through the minimisation of the following Least Square Error :

J(φ) =
∣∣∣∣
∣∣∣∣hf −

∣∣∣FT−1(P(r)eiφ(r))
∣∣∣2

∣∣∣∣
∣∣∣∣
2

+
∣∣∣∣
∣∣∣∣hd −

∣∣∣FT−1(P(r)ei(φ(r)+φd(r)))
∣∣∣2

∣∣∣∣
∣∣∣∣
2

(2.5)

using the previous image formation model. For sake of clarity, the phase estimation technique, in a mono-
chromatic case, will be denoted "Classical Phase Diversity" [CPD], in the following.

2.2 Wide-band imaging
The appropriate formalism to describe wide-band imaging is given by :

IΔλ,λ̄(ν) =
∫ λ̄+Δλ

2

λ̄−Δλ
2

[Oλ � hλ] (ν)dλ (2.6)

h(ν; λ) =
∣∣∣∣
∫∫ −∞

−∞
P(r)eiφ(r)e−2iπ νr

λf dr

∣∣∣∣
2

(2.7)
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with incoherent light, flat spectrum, and of bandwidth Δλ. We denote by λ̄ the central wave-length of the
imaging bandwidth. Ludovic Meynadier 6 has shown that the optimal wavelenght for minimising recons-
truction error on wide bande images is precisely λ̄.

However, the CPD uses a monochromatic image formation model, in the most of the time. In the case
of wide-band imaging largely used in astronomical contexts, the monochromatic image formation model
used to perform the inversion is no more appropriated. Phase estimation using wide-band images therefore
leads to corrugated measurements. In order to understand the impact of this limitation, the next section will
expose the quantification of CPD chromatic error.

3. CLASSICAL PHASE DIVERSITY AND WIDE-BAND IMAGING

Differents solutions could be established to handle the chromatic effects. The first one is to use a
polychromatic image formation model on Phase Diversity. However, this solution needs a complexe model
with an arduous minimisation. That implies an important computation time. A second solution consists
in adding an optical instrument, like a Wynne corrector, on the imaging way for correcting the chromatic
beam. The introduction of additional optics necessarily implies additional aberrations. The third solution
is to model wide-band measurement in order to correct the chromatism effects by a first order numerical
correction, as explained in the following.

The different notations used in the following are gathered on Scheme 2 :

PD

λ̄ ech

a
baΔλa

Δλ λ̄ ech

h

n

hf hd

o

FIG. 2. Scheme of our wide-band correction concept. a being the real aberrations. baΔλ being the estimated aberrations
by a Classical Phase Diversity

PSF hf and hd are computed thanks to Equation 2.7. a being the real aberrations. âΔλ being the
estimated aberrations by Phase Diversity.

3.1 Overall quantification of classical Phase Diversity chromatic error

The wider the band, the more different the PSf hΔλ,λ̄(ν) and h(ν; λ) are. Actually, wide-band imaging
has the effect of spreading the PSF. Performing phase estimation on large band images with CPD leads
to measurement errors. As shown in Figure 3, thiserror increases with bandwidth and with the number of
estimated Zernike coefficients.The reconstructed error ε is defined by the following relation :

ε =

√√√√ N∑
k=1

(ak − âΔλ
k )2 = ||a − âΔλ|| (3.1)

with a = {ak}k=1...N being the real aberrations of our corrugated phase and âΔλ = {âΔλ
k }k=1...N being

the estimated aberrations by CPD.

For a 170 nm bandwidth around λ̄ = 1050 nm, an estimation of 100 Zernikes reaches 50% of error,
while an estimation of only 20 Zernike reaches the same error for a larger bandwidth of 470 nm. In order to
reach an interesting estimation (eg 10% error), the bandwidth has to be limited to 50− 150 nm, depending
on the number of estimated coefficient.

3.2 Detailed analyse of the chromatic error

A detailed study of the phase reconstruction error has been conducted in this section. The behaviour
of each estimated coefficient âΔλ

k has been studied wrt each introduced coefficient a j . Figure 7 shows the
coefficient âΔλ

k estimated with a monochromatic model wrt true coefficient a j for k = 11 and j = 11, and
k = 17 and j = 6.
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FIG. 3. Reconstruction error nm [rms] vs bandwidth. The phase error is 50 nm. The horizontal line show the relative
error. Large band images are simulated with 12 images / Δλ = 100. Bandwidth is centered at 1050 nm, images are
Shannon sampled at 950 nm

FIG. 4. Chromatic phase diversity 2nd order error model, with 500 nm bandwidth. Bandwidth is centered at 1050 nm,
images are Shannon sampled at 950 nm. Simulations and reconstructions are done on 20 Zernike.
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The behaviour of the measured coefficient âΔλ
k with respect to introduced coefficient a vary from a

coefficient to another. On an amplitude range going up to 100 nm, this behaviour is well described by a
second order model. We propose a second order model for the j th wide-band estimated coefficient âΔλ

j :

âΔλ
j = bΔλ

j︸︷︷︸
bias

+
∑

k

MΔλ
jk ak

︸ ︷︷ ︸
first order term

+ at

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑
k NΔλ

j1kak

...∑
k NΔλ

jlkak

...∑
k NΔλ

jnkak

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

︸ ︷︷ ︸
second order term

+o
(||a||3) (3.2)

with âΔλ
j the jth wide-band estimated coefficient, bΔλ

j being the bias term on the j th Zernike for bandwidth

Δλ.
∑

k MΔλ
jk ak being the first order term, ak being the real aberrations of our corrugated phase. M Δλ

jk

corresponds to the error due to the linear coupling between coefficients k and j at bandwidth Δλ. Finally,
the second order term, means the quadratic part of error.

3.3 Bias vector

Bias vector is calibrated by simulation for each bandwidth Δλ. Bias term bΔλ is directly given by the
measurement aΔλ when a = 0. An exemple of bias vector for bandwidth varying from 100 nm to 500 nm
is shown on Figure 5. The only banwidth effect on CPD estimation is located on pure radial order Zernike
polynomials (azimuthal order = 0).

FIG. 5. Bias vector on 20 Zernike for 100 nm to 500 nm bandwidth. Bandwidth is centered at 1050 nm, images are
Shannon sampled at 950 nm.

The main effect of wide-band imaging with null phase is an enlargement of the PSF in the focal-plane.
This is also true for the pure radial order polynomials. Hence, the PSF widennig due to the large bandwidth
is interpreted by the CPD as the presence of pure radials orders abberations (defocus, spherical aberrations,
. . . ).

3.4 First order term

The first order term M Δλ caracterises the gain coefficient and the coupling on phase coefficeints induce
by the CPD using wide-band imaging. The matrix M Δλ is computed for a given bandwidth Δλ and
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could be calibrated by simulation by concatenating the Phase Diversity measurements âΔλ when the true
aberration is composed of the canonical basis (a = [0 . . .a0 . . .0]).

MΔλ
j,∗ =

âΔλ − bΔλ

a0
(3.3)

The matrix MΔλ depends on the choice of a0 which will be discussed further. This matrix is mainly
composed of a diagonal, i.e. a measurement gain. Nevertheless, some non-diagonal terms are clearly vi-
sible, which introduces a non-negligible coupling between true and measured coefficients.

FIG. 6. Matrix MΔλ with 500 nm bandwidth. Bandwidth is centered at 1050 nm, images are Shannon sampled at
950 nm. The estimated coefficient values are coded in gray-scale. Max value is 1.2 and corresponds to white, min
value is −0.4 and corresponds to black. Each introduced coefficient is explained in main text.

3.5 Second order term

Second order term caracterises the quadratic evolution of measurement wrt to the phase itself. The 3-
dimensional matrix NΔλ calibrated with simulation in the same way as M Δλ. The matrix NΔλ includes
second order coupling between estimated coefficients.

3.6 Results of modelisation

Figure 7 shows various scenarii of linear coupling, to refer to Figure 6 for the location of coupling. All
next Figures are simulated with 20 Zernike starting from defocus with a bandwidth of 500 nm. As shown on
the example of Figure 7, our second order model fits to phase measurement more precisely as a first order
model. The first order is a good model for small aberrations, with amplitude up to � 10 nm. The second
order is a good model for a few tens of nanometers. In order to obtain an even better model, we need to use
the Taylor series to the upper order. However, in our case, i.e. the XAO framework, the aberrations are less
than a few tens of nanometers. The second order is therefore the model we need.

4. PSEUDO-LARGE BANDE CONCEPT FOR FIRST ORDER CORRECTION

We have shown in previous Section that chromatism effect is mainly present on pure radial order Zer-
nike polynomials. The matrix M Δλ is mainly composed of a as shown in Figure 6, diagonal term. This
term have an acceptable estimation by first order as we can see in Figure 7a. The second order approxima-
tion is only required for large aberration amplitudes (typically larger than a few tens of nanometers). In a
first step we are going to neglect it, in order to keep the solution simple. A more complex scheme will be
presented in further work.

4.1 Inverse problem

We have validated in Section 3.2 our second order model for data formation. It is validated by simula-
tion. This model is easy to inverse for the first order, and expresses itself in the following way :

âΔλ = bΔλ + MΔλa + o
(||a||2) (4.1)
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a : k = 11, j = 11 b : k = 7, j = 18

c : k = 17, j = 11 d : k = 12, j = 22

e : k = 6, j = 14 f : k = 17, j = 6
FIG. 7. 2nd order error model on various coefficients, with 500 nm bandwidth, centered at 1050 nm, images are Shan-
non sampled at 950 nm. Simulations and reconstructions are done on 20 Zernike modes. The matrix MΔλ is calibrated
with a0 equals to 10 nm and the matrix NΔλ, with a0 equals to 0.1 nm.
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ba = MΔλ† “

baΔλ − bΔλ
”

λ̄ ech

n

hf hd

o

baΔλ

ba

a
ha

Δλ λ̄ ech

P D

FIG. 8. Scheme of our wide-band correction concept. a being the real aberrations. baΔλ being the estimated aberrations
by Phase Diversity. ba being the estimated aberrations after the first order correction

It is easy to inverse beacause the matrix M Δλ is mainly diagonal. In our case, M Δλ, here after called
interaction matrix, is obtained by classical gaussian elimination method. Conditioning value is around 10.
hence, we estimate the true aberrations by a direct matrix inversion.

â = MΔλ†(âΔλ − bΔλ) (4.2)

4.2 Optimal calibration of the interaction matrix

When the inverse problem is solved, we obtain the estimated aberrations â. However, this estimation
depends on the pertinence of the interaction matrix M Δλ, i.e. it depends on the way interaction matrix is
calibrated and more precisely on the value of a0 (amplitude for interaction matrix calibration). The next
Figure 9 shows the optimized use for each interaction matrix. In Figure 9, we show the reconstruction

a b
FIG. 9. Domain of validity of interaction matrix, MΔλ. The Figure 9a is simulated with a bandwidth of 200 nm and
the Figure 9b with a bandwidth of 500 nm. Bandwidth is centered at 1050 nm, images are Shannon sampled at 950 nm.

error of our pseudo-large band concept wrt the amplitude a 4 of true phase (being a pure defocus : φ =
a4Z4). The matrix MΔλ used in our pseudo-large band concept is calibrated with different values of
a0 = [5, 15, 30, 45, 60]. Even if the true phase is composed of a pure defocus, 20 modes are estimated, and
a 20X20 matrix MΔλ is considered.

As we can see, the reconstruction error presents a minimum when the calibration value of the interaction
matrix gets close to the true phase. E.g. in the case of Δλ = 500 nm, and a 0 = 60 nm, the reconstruction
error reaches it minimum for a true phase equals to 60 nm. Hence, the interaction matrix is optimal for a
calibration at the true coefficient.

This is also visible on Figure 10, where the previous results are generalized to a 20 Zernike modes
estimation. The wave-front error is 20 nm, the optimal value of a 0 is therefore 20 nm√

20
= 4.47. In a realistic

case, the true phase is of course unknown. The compensation of a by â will therefore be non-optimal. In
the next Section, we propose a way to mitigate this drawback.
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a : Δλ = 100 nm b : Δλ = 200 nm c : Δλ = 500 nm
FIG. 10. Gain of first order bandwidtqh correction to phase diversity estimation. Simulations and reconstructions are
done on 20 Zernike. Bandwidth is centered at 1050 nm, images are Shannon sampled at 950 nm. Interaction matrix,
MΔλ, are calibrated on 20x20, with the optimal WFE.

4.3 Iterative “first order” correction
In order to account for non-optimal matrix M Δλ, let us introduce the notion of iterative correction.

As shown on Figure 8, the measurement is done iteratively after the phase correction. We have seen in
precedent parts that a first order correction brings already an accurate estimation of the corrugated phase if
we use an optimal interaction matrix. The optimal matrix is calibrated with a value of a 0 equal to the true
coefficient. This value is unknown in a realistic case, we will therefore use a non optimal matrix M Δλ,
calibrated with an arbitrary value of a0. A good way to choose a0 is to estimate it with the Strehl Ratio
(SR) in the image :

a0 =

√
1 − SR

N
(4.3)

with N being the number of estimated modes.

The Figure 11 shows the performance of iterative correction for optimal and non-optimal scheme. The
aim is to quantify the impact of a non-optimal value a0 on the overall performance. For this three Figures,
we used the same 20 nm input phase. The first order iterative correction is done respectively with an 10 nm,
20 nm and 60 nm interaction matrix. The error at first iteration is given by the residual phase after the first
correction, i.e. a CPD results.

a : a0 = 10 nm b : a0 = 20 nm c : a0 = 60 nm
FIG. 11. First order iterative correction. Comparison of performance with calibrated a0 = a)10 nm, b)20 nm, c)60 nm
between interaction matrix. Simulations and reconstructions are done on 20 Zernike for 20 nm of aberrations. Results
are simulated at 100 nm, 200 nm and 500 nm bandwidth. Bandwidth is centered at 1050 nm, images are Shannon
sampled at 950 nm.

Whatever the choice of a0, the convergence level is the same. This result is very encouraging as it shows
that the effects on a non-optimal matrix M Δλ can be compensated by iterative correction. Meanwhile, the
choice of a0 impacts on convergence speed. The closer a0 to true coefficient, the quicker the convergence
is. The error given at first iteration therefore corresponds to the error plotted on Figure 10.
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6. CONCLUSION

We studied in this paper the influence of large band imaging on focal plane aberration estimation. We
proposed and validated a second order model for describing the wide band impact on phase measurement.
We then validated here a first order iterative correction in order to overcome the chromatic error induced by
focal plane sensing. This method is based on a first order model of chromatic focal plane measurement. The
robustness of the method has been studed with respect to calibration of first order interaction matrix M Δλ.
The non-optimal correction is compensated by an iterative process. Encouraging results show a nanometric
residual error even at very large bandwidth as Δλ = 500 nm. Next step consists in an experimental valida-
tion of this procedure. Such a validation requires an AO system capability in order to introduce calibrated
aberrations, and iteratively compensate for them. This sensor will be helpful in the future development of
WFS for faint natural guide star.
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