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1. Introduction

Adaptive optics systems provide a real-time compensation for atmospheric turbulence. However, the
correction is often only partial, and a deconvolution is required for reaching the diffraction limit. The
need for a regularized deconvolution is discussed, and such a deconvolution technique is presented. This
technique incorporates a positivity constraint and some a priori knowledge of the object (an estimate of
its local mean and a model for its power spectral density). This method is then extended to the case of
an unknown point-spread function, still taking advantage of similar a priori information on the point-
spread function. Deconvolution results are presented for both simulated and experimental data.
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not known accurately, which makes deconvolution

The performance of high-resolution imaging with
large optical instruments is severely limited by atmo-
spheric turbulence. In the past 20 years various
techniques have been proposed to overcome this lim-
itation and to reach effectively the diffraction limit of
telescopes. Speckle interferometry! was first pro-
posed and is based on recording series of images with
exposure times short enough to freeze the turbulence.
Various numerical postprocessing methods2-4 then
permit the reconstruction of the observed object. Al-
ternatively, adaptive optics®® (AO) offers a real-time
compensation for turbulence. One can therefore
record long-exposure images without losing the ob-
ject’s high spatial frequencies that correspond to the
fine details. The high spatial frequencies are not
lost but they can, however, be severely attenuated
since the correction is often only partial.6-1© Conse-
quently, the AO-corrected long-exposure images
must be deconvolved to restore the object properly.
A common feature of techniques for imaging through
turbulence is that the point-spread function (PSF) is
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more difficult.

Our goal in this paper is to propose a deconvolution
scheme based on a stochastic approach, which takes
into account the noise in the image and the a priori
information on the object to be restored, as well as the
imprecise knowledge of the PSF.

The outline of the paper is as follows. The prob-
lem of the deconvolution of AO images is briefly
presented in Section 2. Several approaches to this
inverse problem are recalled in Section 3:
minimum-mean-square error (MMSE) estimation,
maximum a posteriori (MAP) estimation, and Wie-
ner filtering. In Section 4, a regularized criterion
to be minimized is derived from the a posteriori
probability distribution, assuming that the PSF is
known. The regularization function and the regu-
larization parameter are both deduced from a model
of the object’s spatial power spectral density (PSD).
The regularization issue, the use of additional pos-
itivity constraints, and the extension to a myopic
deconvolution scheme are discussed and illustrated
with numerical simulations. We use the term my-
opic deconvolution rather than blind deconvolution
to underline the fact that the PSF is not completely
unknown; indeed our scheme uses some available a
priori information on the PSF, namely, its positivity
and estimates of its ensemble mean and PSD. Fi-
nally, the deconvolution technique is applied to ex-
perimental data and the results are presented in
Section 5.



2. Framework: Partially Corrected Adaptive Optics
Images

Within the isoplanatic angle, the intensity i(r) at the
focal plane of the system consisting of the atmo-
sphere, the telescope, and the AO bench is given by

i(r) = h(r) * o(r) + n(r), (D

where r is the spatial coordinate, o(r) is the observed
object, h(r) is the system PSF, and n(r) is an additive
zero-mean noise. In the sections below we consider
that the object and the image are sampled on a reg-

ular grid; hence we have a vectorial formulation for
Eq. (1):

i=Ho +n, (2)

where o, i, and n are the vectors corresponding to the
lexicographically ordered object, image, and noise,
respectively. H is the Toeplitz!! matrix correspond-
ing to the convolution by the PSF A.

We consider here the case of AO-corrected long-
exposure images. The AO correction is partial, and
its quality depends on the observing conditions: tur-
bulence strength, imaging wavelength, magnitude of
the source used for wave-front sensing, and system
characteristics.

The simulations presented in this paper are ob-
tained under the following turbulence conditions: a
Fried parameter'2 r, equal to 10 cm at the imaging
wavelength 0.5 pm and a 10-m/s wind speed. We
consider a 1.52-m telescope with a central obstruction
diameter equal to 0.56 m. The AO system is
equipped with a 10 X 10 piezostack mirror (of which
88 actuators are active). It uses a9 X 9 subaperture
Shack—Hartmann wave-front sensor, with 64 useful
subapertures. The AO servoloop bandwidth is 80
Hz. With a tenth-magnitude guide star, the simu-
lations give a Strehl ratio equal to 0.10 (intensity at
the center of the field of the corrected long-exposure
image normalized to the intensity at diffraction lim-
it). The corresponding long-exposure optical trans-
fer function (OTF) is shown in Fig. 1. This is a
typical corrected OTF7-10:  a low-frequency lobe and
a high-frequency wing going up to the telescope cutoff
frequency. The spatial frequencies between ry/\
and D/\, which would be lost without correction, are
now preserved, although severely attenuated. The
effect on the observation of astronomical objects is
illustrated in Fig. 2. The figure shows the observed
object, a tiny galaxy (4.2-arc sec field of view), and the
corresponding long-exposure image deduced from Eq.
(1). The fine details are blurred. The goal of the

deconvolution is to correct for the OTF in order to
restore the high spatial frequencies of the object prop-
erly. After a brief review of stochastic approaches in
Section 3, several deconvolution schemes, which are
applied to a noisy version of the image shown in Fig.
2, are presented and analyzed in Section 4.

3. Stochastic Approaches to the Restoration Problem

We consider in this section the problem of the decon-
volution with a known PSF, which is called in this
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Fig. 1. Normalized OTF versus spatial frequency: AO-corrected
OTF (solid curve). The aberration-free OTF (dotted curve) and
the uncorrected OTF (dashed line) are shown for comparison.
The spatial frequency is normalized to the telescope cutoff.

paper classical deconvolution. The extension to my-
opic deconvolution is discussed in Section 4.

It is now well known that the restoration of the
object by use of the sole data is an unstable process
(see in particular Refs. 13-15 and Refs. 16 and 17 for
reviews). It is the case, for example, for the least-
squares method!8 (minimization of i — o * h|J),
which corresponds to a maximum-likelihood (ML) so-
lution in the case of white Gaussian noise. It is also
the case with the Richardson—Lucy!®2° algorithm,
which corresponds to a ML solution in the case of
Poisson noise. It is possible to regularize the solu-
tion by stopping the algorithm before convergence,
but this leads to a poor control of the solution. It is
instead preferable to modify the criterion to be min-
imized (or maximized), which corresponds to adding a
priori information on the solution. The a priori in-
formation can be introduced either as a constraint
(e.g., smoothness!®21) within a deterministic frame-
work or through an a priori probability in a stochastic
approach (see Ref. 17 for the link between the two
approaches and Ref. 22 for a classification of the
methods).

True Object (a) Corrected Image (b)

(a) True object on 128 X 128 pixels, (b) AO-corrected
simulation with Strehl ratio equal to 0.10, field of view 4.2
arc sec, wavelength 0.5 pm.

Fig. 2.
image:
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In stochastic approaches the object is seen as one
realization of a stochastic process. The object is en-
dowed with an a priori distribution p(0), and Bayes’
rule combines the likelihood of the data p(iJo) with
this a priori distribution into the a posteriori proba-
bility distribution p(oli):

p(oli) « p(ilo)p(0). (3)

This leads to two commonly used object estimation
methods: the MAP estimation and the MMSE esti-
mation. On the one hand, the MAP estimation de-
fines the restored object as the most probable object,
given the data:

0., = arg max p(oli). 4)

On the other hand, the MMSE estimator is defined as
the one that minimizes, on average, the distance with
the true object:

A

Ommse = argAmin E(”é - 0”2)1 (5)

where E( ) stands for the mathematical expectation
with respect to the object and to the image noise. It
can be shown that this estimator is the mean object
with respect to the a posteriori probability distribu-
tion23.24;

B, = E(oli) = J op(oli)do. 6)

In general, the calculation of the MMSE estimator is
not tractable unless the estimator is assumed to be
linear. The minimization of Eq. (5) under this as-
sumption leads to the Wiener filter.232¢ It is impor-
tant to note that in the case of joint Gaussian
statistics for the noise and the object, the Wiener, the
MMSE, and the MAP estimators are identical.23

In Section 4 we use the MAP approach and show
that this stochastic framework allows us to derive the
regularization parameter from a reasonable model of
the object spatial PSD. Note that, throughout this
paper, the a priori statistics on the object are as-
sumed to be Gaussian. This assumption can be jus-
tified by an information theory standpoint as being
the least informative, given the first two moments of
the a priori distribution. In contrast, deterministic
methods leading to a regularized criterion usually
use empirical regularizing functions (e.g., square
norm of a Laplacian) to enforce the object smooth-
ness.

4. Construction of a Regularized Criterion

A. Classical Deconvolution

1. Maximum a posteriori Estimator with Gaussian
Statistics

We first consider the case of the classical deconvolu-
tion with Gaussian, zero-mean noise. This assump-
tion of the noise allows us to obtain explicit
expressions in Fourier space of the criteria to be min-
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imized (for the classical and the myopic cases), as well
as an analytic solution in Fourier space in the clas-
sical case. Yet, for astronomical imaging under low-
light-level conditions or for objects of small extension,
it is preferable to use a Poisson noise model instead
(see Subsection 4.A.2).

With the above assumptions, the a posteriori prob-
ability distribution is easily derived:

p(oli) = p(ilo) p(0)
o« exp[—1/2( — Ho)tR,fl(i — Ho)] (7

X exp[—1/2(0 — 0,,)'R, (0 — 0,)],

where we used the vectorial formulation introduced
in Eq. (2) and the superscript ¢ denotes transposition.
R, and R,, are the covariance matrices of the object
and the noise, respectively, and o, = E(o) is the
mean object, that is, the ensemble mean of the class
of objects being observed. Following Hunt,25 we as-
sume on the one hand that the mean object is not
necessarily constant, so that o may not be stationary,
which is closer to reality than the common stationar-
ity assumption. On the other hand, in order to keep
our problem tractable, we assume that (o — o,,) is
stationary, so that the covariance matrix R, is To-
eplitz. Similarly, we assume that the noise is sta-
tionary, so that R, is also Toeplitz; for a white noise
(no correlation between pixels), this corresponds to
considering that the variance of the noise remains
uniform on the whole image.

The MAP estimation consists of maximizing p(oli),
which is equivalent to minimizing —In[p(oli)]; hence
the following criterion:

J(0) = (i— Ho)R,'i— Ho) + (0 — 0,)'R, (0 — 0,),
(8)

to be minimized with respect to the object. The first
term (least squares) corresponds to the likelihood,
and the second term is the regularizing function.
Let us show that, with minor approximations, this
criterion can be expressed in the Fourier domain as a
function of the noise and the object spatial PSD’s. It
is well known that Toeplitz matrices can be approx-
imated by circulant matrices,'” with the approxima-
tion corresponding to a periodization. Within this
approximation, the covariance matrices R, and R,
and the convolution matrix H are diagonalized by a
discrete Fourier transform® (DFT). One can there-

fore write
R, = F ! diag[PSD,]F, 9)
R, = F ! diag[PSD, |F, (10)
H = F ! diag{[DFT(h)]F, (11)

where F is the two-dimensional DFT matrix, and
diag[x] denotes a diagonal matrix having x on its
diagonal. PSD, and PSD,, are the numerical power



spectral densities of the object and noise, respective-
ly:

PSD, = DFT(E{[0(r') — 0,,(") 0" + 1) — 0,0 + 1]}
= E[6(f) — 0u(f)I1 = E[I6(f)["] = [6m( /I
(12)

Note that, following Jain,!! we define the PSD of an
image as the Fourier transform of its covariance, not
of its autocorrelation (the latter being the common
definition in signal processing). With Eqgs. (9)-(11),
a new expression of the criterion is deduced from Eq.

(8):

[R(FIB(f) = i(IF  8(F) = BulF)
PSD,(f) |’
(13)

where the tilde denotes the two-dimensional DFT
and f'is the spatial frequency. The MAP estimation
with a priori Gaussian statistics for the object there-
fore leads to a regularized quadratic criterion. Note
that the regularizing function is directly related to
the object PSD. Furthermore, since the criterion is
directly derived from the probability distributions
there is no scaling factor (regularization parameter)
to be adjusted between the likelihood term and the
regularization term.

In this particular case in which the PSF is known
and a positivity constraint is not used, an analytical
expression of the MAP estimator is obtained by com-
putation of the derivative of the criterion with respect
to the object. In Fourier space, it reads

J(o) =,

G PSD,(f)

R (f)i(f)

- PSD,
B+ ) EQ
PSD,(f)

PSD,(f)

~ o, PSD,(f)
B+ b )

8.,(f) =

On(f). (14)

This is the expression of the Wiener filter for the
special case in which o,, is not zero.2> A geometric
interpretation of this equation is that, at each fre-
quency, the component of the solution lies on the
segment between an ultrarough solution (the inverse
filter) and an ultrasmooth solution (the a priori mean
object); the position on the segment is a function of
the signal-to-noise ratio. Note that the introduction
of such a nonzero mean for the object does not im-
prove the restoration quality very much because o,,
is typically very slowly varying (that is, not far from
being flat), and the signal-to-noise ratio is high at low
frequencies. Yet the introduction of a nonzero mean
for the PSF will be useful in the myopic extension of
the current estimator, because the average PSF is far
from being flat (see Subsection 4.B).

The solution given in Eq. (14) is the expected one
since, as mentioned in Section 3, in the case of Gauss-
ian statistics, Wiener filtering and the MAP estima-
tion are identical. However, the advantage of the
MAP approach is that we can generalize the criterion
to the case of myopic deconvolution (see Subsection
4.B).

2. Possible Estimators with Poisson Statistics

In astronomical imaging (and in the simulations be-
low), the noise is often predominantly photon noise,
which follows Poisson statistics, whereas the estima-
tor given by Eq. (8) has been derived under a Gauss-
ian noise assumption.

One possibility is to derive the true MAP estimator
for photon noise statistics. It is obtained when the
(quadratic) ML term of the criterion is replaced with
the negative log likelihood of the Poisson law, so that
Eq. (8) becomes

J(0) = >, (Ho)(r) — i(r) In[Ho)(r)]

+ (0 — 0,)R, (0 — 0,). (15)

The solution to the minimization of this criterion is no
longer analytical and must be sought by a numerical
method. A further refinement of this criterion could
be to use a mixed Poisson—Gauss noise model to ac-
count for both photon and electronic noises.26

Another possibility is to still use the estimator
given by Eq. (8) [or equivalently by Eq. (13) or Eq.
(14)] with R, equal to a scaled identity matrix, i.e.,
PSD,(f) = Ny, where N, is the average total flux.
Indeed, stationary white (E}aussian noise, with a uni-
form variance equal to the mean number of photons
per pixel, is a first approximation of photon noise in
the case of a bright and rather extended object. Be-
cause of this approximation of the noise statistics, the
estimator is no longer a true MAP estimator, and can
be termed a regularized least-squares (RLS) estimator.

Yet, for simplicity, we use this RLS estimator be-
low. Indeed, because our aim in this paper is to
introduce a myopic deconvolution scheme, we wish to
focus on the regularization terms for the object and
for the PSF (Subsections 4.A.3 and 4.B) rather than
on the noise term. Besides, even if our estimator is
suboptimal, it leads to well-restored objects, as is
shown in the following subsections.

3. Choice of the Regularization Function

The a priori information required on the object for
computing the regularization function [second term
of Egs. (13) and (15)] consists of two quantities: the
mean object and the object PSD. With an ergodicity
assumption for the object, o,, can be estimated by a
local average of the image (because the image is itself
a kind of local average of the object), the support of
this averaging filter being at least the effective sup-
port of the PSF (and more if the image is noisy). So
this mean object is essentially low frequency.

At high frequencies, the action of the regulariza-
tion function is to draw the estimate toward zero,
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Fig. 3. Normalized PSD models versus spatial frequency: ade-
quate model corresponding to the true object (solid curve), and -4th
power-law model corresponding to the Laplacian-type regulariza-
tion (dashed curve). The square modulus of the true-object Fou-
rier transform (circular average) is shown for comparison (dotted
curve). The spatial frequency is normalized to the telescope cutoff
frequency. The mean object is assumed here to be constant.

with a stiffness determined by the model taken for
the object PSD. As mentioned above, a classical reg-
ularization term used in deterministic methods is the
square norm of the Laplacian of the object.18:21 In
the Fourier domain it reads N 3, /*6(f)[>. By iden-
tification with the second term of Eq. (13), this regu-
larization can be interpreted!” as a zero-mean
Gaussian a priori on the object with PSD, (f) = f*.
Besides the fact that the mean should not be taken as
equal to zero, this kind of PSD is not appropriate for
astronomical objects. The spectrum of typical ob-
jects effectively follows a power law at high frequen-
cies, for example, £ for a uniform disk and between
f 2 and f* (depending on the considered direction)
for a square. Yet this power, which is denoted here-
after by p and characterizes the regularity of the
object, is smaller than 4 even for extremely extended
objects such as the Earth viewed from a satellite,2?
and typically is between 2 and 4. The other diffi-
culty with a Laplacian-type regularization term is
how to adjust the regularization parameter \.

We thus choose the following PSD model (see, e.g.,
Ref. 27 and references therein, and Ref. 28):

PSD,(f) = E[|6(f)I*] — [om(f)I*
= Np/[1 + (f/foF1 = [6m( O,

where f; is a cutoff frequency introduced to avoid the
divergence at the origin and is taken as the inverse of
the characteristic size of the object. This simple
parametric model avoids the need for a hyperparam-
eter estimation; the estimation of a somewhat arbi-
trary hyperparameter is replaced with that of N,
and f; (and p), but these parameters are more phys-
ically meaningful. Additionally, in order to check
the validity of this model, we have verified, in the
restorations presented below, that increasing or de-
creasing PSD, by a factor of 10 indeed degrades the
restored image.

The validity of such a PSD model is illustrated in

(16)
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(a) (b)

Fig. 4. Objects restored by classical deconvolution by the RLS
estimator with the true PSF, without a positivity constraint: (a)
Laplacian-type (f %) regularization, (b) regularization derived
from the good (%) object PSD model. The distance to the true
object is d(6, o) = 63 for (a) and 56 for (b).

Fig. 3. The circular average of the square modulus
of the DFT of the true object shown in Fig. 2 is drawn
and compared with the model with p = 4, which is
clearly not good for our object. A much better model
is obtained with a 2 high-frequency evolution, i.e.,
p = 3. The shoulder of the curve occurs around f;
(=0.03D/N).

In all the restorations presented below, the input
image is the AO-corrected image presented in Fig. 2,
normalized to a total flux of 10° photons, on which
photon noise is added. Figure 4 illustrates the in-
fluence of the choice of the object PSD on the quality
of the restored object. The results are obtained by
application of Eq. (14) (RLS estimator) with the two
PSD models shown in Fig. 3. The mean object is
taken as the 5 X 5 local average of the image. The
object is better resolved with an 2 PSD fit [Fig. 4(b)]
than with the f* law, which corresponds to a
Laplacian-type regularizing function [Fig. 4(a)].
The restoration quality can be quantitatively evalu-
ated by the calculation of a distance to the true object
0, defined as

1/2

1 .
d(6, 0) = N > |6(r) — o(r)]?| (photons/pixel),

pix pixels
a7

where N ;. is the total number of pixels in the image.
The distance is indeed larger for the object of Fig. 4
restored with a Laplacian-type regularization: 63,
compared with 56 photons obtained with our PSD
model. In any case, the distance between the noisy
version of Fig. 2 and the true object is much larger
(140 photons), which means that the corrected image
is not a good estimate of the object and that the

estimation is greatly improved by deconvolution.

4. Addition of a Positivity Constraint

The object intensity map is a set of positive values,
which is important a priori information. One should
therefore enforce a positivity constraint on the object.
This constraint can be implemented in various
ways?é: criterion minimization under the positivity



Fig. 5. Object restored by classical deconvolution by the RLS
estimator with the true PSF and a positivity constraint. The
regularization is derived from the f~3 PSD model. The distance
to the true object is d(6, 0) = 53.

constraint, reparameterization2?® of the object, or ex-
plicit modification of the a priori probability distribu-
tion (e.g., addition of an entropic term). The first
two methods can actually be interpreted as an im-
plicit modification of the a priori distribution that
sets a zero probability to objects that have negative
pixel values.

The results presented below are obtained with the
RLS estimator and the reparameterization method:
We perform a minimization of the criterion given in
Eq. (13) with respect to a(r), defined by o(r) = a(r)%.
In this case the estimator is not a linear filter and it
is not possible to find an analytical solution. The
criterion is thus minimized by a numerical iterative
algorithm (a conjugate gradient in our case29).

Figure 5 shows the gain brought by the positivity
constraint when the image shown in Fig. 2 is restored
by the RLS estimator. The object is regularized
with the f~3 PSD model presented in Fig. 3. The
distance to the true object is 53 photons, which con-
firms that the object is better restored with the pos-
itivity constraint [compare with Fig. 4(b)].

B. Myopic Deconvolution

The estimation of the long-exposure PSF in astro-
nomical imaging with AO is a difficult subject.10:30.31
The usual way to obtain the PSF is by calibration on
a reference star near the observed object. This
method is not satisfactory for several reasons: First,
the turbulence is likely to have evolved between the
acquisition of the object of interest and that of the
reference star. Second, because of the different spa-
tial extents and the different fluxes of the object and
the reference star, the control loop is likely to behave
differently in the two cases.

Several authors have addressed this problem of
deconvolution of turbulence-degraded images with an
unknown PSF. Ayers and Dainty32 used a
Gerchberg—Saxton—Papoulis-type algorithm33-35 and
encountered the known3é convergence problems as-
sociated with such projection-based algorithms.
Others37-42 have used methods based on a ML ap-
proach, the algorithm used to maximize the likeli-
hood being either the expectation-maximization
method37-39 or the minimization of an explicit criteri-
on.38.40.41  They have generally recognized the need

for a regularization other than the sole positivity (of
the object and the PSF) and introduced in particular
a bandlimitedness on the PSF.37:40  This kind of a
priori information on the solution (and more if it is
available) can be introduced naturally if the approach
presented above is adopted.

We therefore generalized the deconvolution
scheme to the case of myopic deconvolution, in which
both the object and the PSF have to be restored.2?
Similarly to what was done for o, the PSF can be
considered a stochastic process. Since the PSF can
be considered the temporal average of a large number
of short-exposure PSF’s, its a priori statistics can
reasonably be assumed to be Gaussian. Following
the theoretical developments presented in Subsection
4.A.1, our estimator becomes

[6, h] = arg max p(o, hli)

arg max p(ilo, h))p(0)p(h)

= arg Iﬁ’lin J(o, h) (18)

with a new criterion (o, h), which is now a function
of o and h. This criterion has three terms: One is
the opposite of the log likelihood of the data, one is an
object regularization term, and one is a PSF regular-
ization term, similar to a recently suggested deter-
ministic approach.#3 For stationary Gaussian noise,
this criterion can be written as

L |BR(HBH —UNE | [8(f) = bl P
Jo. =2 |\ " oen () T psy(f)
[B(f) — hy(f)>
+ —PSDh(f) , (19)

where PSD,, is the spatial PSD of the PSF, and h,, is
the ensemble mean OTF (Fourier transform of the
ensemble mean PSF). Again, when the noise is not
Gaussian (which is the case in astronomical imag-
ing), this estimator is not a true MAP estimator but
a myopic RLS estimator, unless the first term of the
criterion is replaced with the log probability of the
noise.

The last term (regularization on the PSF) cannot be
ignored, otherwise the myopic deconvolution usually
leads to the trivial solution: a Dirac function for the
PSF and an object equal to the image. PSD,, is ex-
pressed simply as a function of the first two moments
of the OTF:

PSD,(f) = E[[A(f) — hu(f)'] = E[[(f)]] - [hu(/)].
(20)

It should be noted that PSD,(f) is zero above the
cutoff of the telescope, so that the regularization in
particular enforces a zero value for the estimation of
h(f) above the cutoff. Also, if the variations of the
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(a) (b)

Fig. 6. Comparison of (a) classical, (b) myopic deconvolutions.
In both cases the image h,. of a reference star is available, but r, is
5 cm for h,. (it was 10 cm for the image i). In (a) the PSF is taken
as h,; in (b) the mean PSF is taken as the circular average of h,. and
PSD,, is taken as the circular average of |h,|? [see Eq. (23)]. Pos-
itivity constraints are applied on the object and the PSF, and the
object regularization is derived from the £ 2 PSD model. The
distance to the true object is d(6, 0) = 442 in the classical case and
127 in the myopic one.

PSF are essentially due to turbulence, it can be
shown10-4445 that PSD,, is given by

PSD,(f) = (t/DISTFu(f) — [hm(A)I],  (21)

where STF,,, is the so-called speckle transfer function
(second moment of the short-exposure OTF), 7 is the
coherence time of the turbulence, and T is the inte-
gration time.

The restoration quality obtained with myopic de-
convolution is of course related to the quality of the
mean PSF h,, and the PSD model PSD,. The PSD
of the PSF can be viewed as a per-frequency variance
of the fluctuations of the OTF around its mean value.
Ideally, both h,,, and PSD,, should be estimated from
control-loop data.10-3031  [f these data are not avail-
able, h,,, and PSD,, can be approximated by use of the
image of a reference star, say h,. In particular, h,,
can be approximated by the circular average of h,. if
the residual static aberrations of the telescope are
known to be negligible, or else by h, itself. Simi-
larly, when expected values are replaced with circu-
lar averages (over spatial frequencies) in Eq. (20), a
possible estimate for PSD,, could be

PSD,(f) = (h2(F) — ()P, (22)

where (-) denotes a circular average and the exposure
times on the reference star and on the object are
assumed to be equal. Yet, because of all the reasons
mentioned at the beginning of Subsection 4.B, the
true PSF may differ considerably from h,. That is
why we suggest using an estimate of PSD, higher
than this one. In practice, we found that

PSD,(f) = (h,/2(f) (23)

gives satisfactory results. It is an upper bound of
Eq. (22) and is a good approximation in the case of a
low-quality correction.

Figure 6 shows the effect of the PSF regularization
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Image (a) Deconvolution (b)

Fig. 7. Observation of the asteroid Vesta with the Office National
d’Etudes et de Recherches AO bench (7 June 1996, 20:58UT): (a)
corrected image (estimated Strehl ratio 0.09), (b) object restored by
myopic deconvolution with positivity constraint and regularization
on both the object and the PSF. The imaging wavelength is 0.7
pm (40-nm spectral bandwidth) with a 5-min exposure time. The
estimated number of detected photons is 3.46 X 107. The field of
view for the figure is 1.65 arc sec (the image presented here is the
processed image truncated to half its size).

term in the case of a notable variation of the Fried
parameter r, between the acquisition of the image
and that of the reference star; r( is assumed to have
varied from 10 cm for the image i to 5 cm for the
reference star h, (corresponding to a Strehl ratio of
0.01). A classical deconvolution with h, as the PSF
is compared with the myopic deconvolution with the
circular average of h, as an estimate of h, and the
circular average of |h,|? [see Eq. (23)] as an estimate
of PSD,,. In both cases the positivity constraint is
enforced on the object and the PSF with the reparam-
eterization proposed in Subsection 4.A.4, and an ad-
equate (f °) object regularization is used. The
distances to the true object are, respectively, 442 and
127 photons. These simulation results prove that a
measurement of the PSF, as rough as it may be, can
be advantageously used to derive a regularization
term, even if it is not reliable enough to be used as an
estimate of the kernel in a classical deconvolution.

5. Deconvolution of Experimental Data

The myopic deconvolution scheme is applied here to
an experimental image of the asteroid Vesta recorded
in June 1996 with the Office National d’Etudes et de
Recherches Aérospatiales AO bench installed on the
1.52-m telescope at the Observatoire de Haute Prov-
ence.*¢ The system characteristics are identical to
the ones taken for the simulation presented in Sec-
tion 2.

A 128 X 128 image of Vesta (field of view 3.3 arc
sec) was recorded at the imaging wavelength 0.7 pm
(40-nm spectral bandwidth). The central part of the
image is shown in Fig. 7. The exposure time is 5
min, and the estimated number of detected photons is
3.46 X 10”. The asteroid edges are not detected, and
no detail can be seen on the surface. The myopic
deconvolution scheme described in Subsection 4.B is
applied to this image. The positivity constraint is
used on both the object and the PSF. The object



PSD is estimated by a polynomial fit of the Fourier-
transform square modulus of a uniform disk of diam-
eter 0.9 arc sec. The ensemble mean of the object is
taken as the 5 X 5 local average of the image. The
PSD used for the PSF is the circular average of the
square modulus of the OTF deduced from the image
of an unresolved star of similar magnitude (HR5586
in this case). The restored object is shown in Fig.
7(b). The estimated object exhibits sharp edges.
Dark and bright spots are also resolved on the sur-
face. These structures are unlikely to be artifacts;
similar features have indeed been observed by as-
tronomers.4748 The Strehl ratio computed on the
estimated PSF is 0.09.

6. Conclusion

A stochastic framework for the restoration of long-
exposure AO images has been presented.

It has been shown that the regularization function
is advantageously derived from the PSD of the class
of object being observed. Indeed, this leads to better
results than does a regularization with a heuristic
criterion, and it avoids the need for a hyperparameter
estimation, as demonstrated by simulations.

The positivity a priori information has been incor-
porated into the restoration, and its beneficial influ-
ence has been shown. This restoration scheme has
been extended to the case of imprecise knowledge of
the PSF, while all the reduced available information
on the PSF (positivity and estimates of the mean and
the PSD) is used. Last, this scheme has been suc-
cessfully applied to experimental data.

Future work should include a better modeling of
the noise, with possibly a mixed Poisson—Gauss
model to account for both photon and electronic
noises. It could also include the refinement of the a
priori information on the object and the PSF and
possibly use a nonstationary nonquadratic object reg-
ularization in order to preserve the edges better.
Additionally, the PSF mean and the PSD could be
estimated from control-loop data rather than from a
reference star. Also, our method could be extended
to a multiframe myopic deconvolution. Last, the
uniqueness of the solution and the existence or not of
local minima for the myopic criterion deserve to be
studied.
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