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ABSTRACT

High resolution wide-field imaging of the human retina callsfor a 3D deconvolution. In this communication, we report
on a regularized 3D deconvolution method, developed in a Bayesian framework in view of retinal imaging, which is fully
unsupervised,i.e., in which all the usual tuning parameters, a.k.a. “hyper-parameters”, are estimated from the data. The
hyper-parameters are the noise level and all the parametersof a suitably chosen model for the object’s power spectral
density (PSD). They are estimated by a maximum likelihood (ML) method prior to the deconvolution itself.

This 3D deconvolution method takes into account the 3D nature of the imaging process, can take into account the
non-homogeneous noise variance due to the mixture of photonand detector noises, and can enforce a positivity constraint
on the recovered object. The performance of the ML hyper-parameter estimation and of the deconvolution are illustrated
both on simulated 3D retinal images and on non-biological 3Dexperimental data.

Keywords: 3D deconvolution, retinal imaging, three-dimensional microscopy, hyper-parameter estimation, unsupervised
estimation, regularization, inverse problems.

1. INTRODUCTION

Early detection of pathologies of the human retina call for an in vivo exploration of the retina at the cell scale. Direct
observation from the outside suffers from the poor optical quality of the eye. The time-varying aberrations of the eye can
be compensateda posterioriif measured simultaneously with the image acquisition; this technique is known asdeconvo-
lution from wavefront sensing1, 2 and has been successfully applied to the human retina.3 These aberrations can also be
compensated for in real-time, by use of adaptive optics (AO).4 Yet, the correction is always partial.5–7 Additionally, the
object under examination (the retina) is three-dimensional (3D) and each recorded image contains contributions from the
whole object’s volume. For these two reasons, a deconvolution of the recorded images is necessary.

In two-dimensional (2D) deconvolution, each image is deconvolved separately,i.e., only one object plane is assumed
to contribute to each image. This is an appropriate image model in astronomy for instance, but is a crude approximation
in microscopy, as it does not properly account for the halo ineach image that comes from the parts of the observed object
that are out-of-focus.

Three-dimensional deconvolution is an established technique in microscopy, and in particular in conventional fluores-
cence microscopy.8 The combination of a conventional microscope with deconvolution is often referred to as deconvolu-
tion microscopy or even “digital confocal”, because the useof 3D deconvolution can notably improve the resolution of the
recorded conventional images, especially in the longitudinal (a.k.a. axial) dimension, while remaining simpler and cheaper
than a confocal microscope. Yet, to the best of our knowledge, deconvolution of retinal images has so far been performed
with 2D deconvolution techniques, both in deconvolution from wavefront sensing3 and in deconvolution of AO-corrected
images.9

Besides, because deconvolution is an ill-posed inverse problem,10–12most modern deconvolution methods use regular-
ization in order to avoid an uncontrolled amplification of the noise.

Further author information: G.C. is now with Observatoire de Paris-Meudon /LESIA. E-mail: Guillaume.Chenegros@obspm.fr.
L.M.M.’s E-mail is Laurent.Mugnier@onera.fr.



2. 3D DECONVOLUTION METHOD

The image formation is modeled as a 3D convolution:

i = h⋆o + n (1)

wherei is the (3D) pile of (2D) recorded images,o is the 3D unknown observed object,h is the 3D point spread function
(PSF),n is the noise and⋆ denotes the 3D convolution operator.

For a system withN images ofN object planes, this 3D convolution can be rewritten as:

ik =





N−1
∑

j=0

hk−j ⋆ oj



 + nk (2)

whereoj is the object in planej, ik is thek-th recorded image,hk−j is the 2D PSF corresponding to a defocus of(k − j)
slices, and⋆ denotes the 2D convolution operator. The PSF is that of the system composed of the eye, the imaging system
(including the AO) and the detector. We assume that the wholerecording process is fast enough so that the different 2D
PSF’s differ only by a defocus. Figure1 illustrates the imaging process in the case of three object and image planes.
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Figure 1. Illustration of 3D imaging of the retina for 3 object planes.The observed 3D objecto is on the left and one plane,i1, of the
3D imagei is represented on the right. All object planes contribute toeach image plane.

Note that the raw image must be carefully pre-processed to yield an image that closely follows this imaging model. The
pre-processing includes the relative registration of the raw images13 and an image tapering in order to reduce the artefacts
due to the periodization done by fast Fourier transforms. The goal is to obtain an estimatêo of the observed 3D objecto
given the imagesi, the 3D PSFh, and some prior information on the noise statistics and on the object.

2.1. Framework

Most deconvolution techniques boil down to the minimization (or maximization) of a criterion. An important task is the
definition of a suitable criterion for the given inverse problem.

Following the Bayesian12 MaximumA Posteriori(MAP) approach, the deconvolution problem can be stated as follows:
we look for the most likely object̂o given the observed imagei and our prior information ono, which is summarized by a
probability densityp(o). This reads:

ô = arg max
o

p(o|i) = arg max
o

p(i|o) × p(o). (3)

Equivalentlyô can be defined as the object that minimizes a compound criterionJ(o) defined as follows:

J(o) = Ji(o) + Jo(o), (4)



where the negative log-likelihoodJi = − ln p(i|o) is a measure of fidelity to the data andJo = − ln p(o) is a regularization
or penalty term, so the MAP solution can equivalently be called a penalized-likelihood solution. Note that the Bayesian
approach does not require thato truly be the outcome of a stochastic process; rather,p(o) should be designed to embody
the available prior information ono, which means thatJo should have higher values for objects that are less compatible
with our prior knowledge,11 e.g. that are very oscillating.

Wheno is not the outcome of a stochastic process,Jo usually includes a scaling factor or global hyper-parameter,
denoted byµ in the following, which adjusts the balance between fidelityto the data and fidelity to the prior information.
Because the optimal balance between data and prior depends on the flux of each object plane, in the following we propose
a regularization term with one such hyper-parameterper object plane. And we shall show in Section3 how to estimate
these hyper-parameters.

2.2. Object prior

The choice of a Gaussian prior probability distribution forthe object can be justified from an information theory standpoint
as being the least informative, given the first two moments ofthe distribution.

Additionally, we assume that the different object planes are independent because firstly, the retina is composed of
potentially very different slices, and secondly we would like to improve the axial resolution in the restored object, which
would be hampered by a regularization in the axial dimension. The regularization criterion is thus quadratic (or “L2” in
short) and given by:

Jo(o) =
1

2

N−1
∑

l=0





∑

f

∣

∣õl(f) − õl(f)
∣

∣

2

Sol
(f)



 (5)

whereSol
is the 2D power spectral density (PSD) of object planel.

A reasonable model of the PSD of each object plane can be found14 and used with potentially different parameters for
each plane in the above equation. It reads:

Sol
(f) =

1

µl

(

1 +
(

|f |
f0

l

)pl
) , (6)

where

• µl is inversely proportional to the energy of object planel;

• pl characterizes the spectral richness of object planel – in practice,p goes from0 for point like objects to4 for very
smooth extended objects;

• f0

l represents the inverse of the 2D object size for finite support objects. This parameter is very difficult to adjust by
hand for objects extended beyond the field of view.

With such a fine PSD model per plane (3 ×NP parameters forNP object planes), the MAP method can optimally
adjust the balance between the resolution and the robustness to noise not only for each plane foreach spatial frequency
in each plane, provided the PSD model parameters are correctly tuned. Tuning all these hyper-parameters in a supervised
fashion (i.e., manually) is unrealistic, so we developed a method to estimate these hyper-parameters in an unsupervised
way directly from the data, before performing the deconvolution. Before we derive this method in Section3, in the next
subsection we give some details about the noise model that isincorporated into our method.



2.3. Noise model

The noise is a mixture of photon noise and detector noise. Photon noise is non-stationary, white, Poisson-distributed and
can be well modeled as non stationary white Gaussian as soon as the flux level is a few tens of photo-electrons per pixel.15

Detector noise is, to a good approximation, stationary white Gaussian, so the sum of these two noises can reasonably be
modeled as non stationary white Gaussian. The neg-log-likelihood of the data is thus the following weighted least-square
difference between the actual datai and our model of the data for a given object,h ⋆ o:

Ji(o) =
1

2

N−1
∑

k=0

Npix−1
∑

p,q=0
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3. UNSUPERVISED HYPER-PARAMETER ESTIMATION

In this section, we estimate the parameters of the object 3D PSD by Maximum Likelihood (ML). The proposed procedure
is an extension to 3D imaging of the method developed by Blancet al. in the context of phase diversity wavefront-sensing16

and applied by Gratadouret al. to the restoration of AO-corrected astronomical images.17 With the parametric PSD model
of Eq. (6), the 3D object PSD is determined by three parameters per object plane. In this subsection (and only here), we
make the additional approximation that the noise is stationary, of varianceσ2

k, within each image planek; this makes the
object PSD estimation much more tractable, and is justified by the fact that the images considered here are illuminated
rather uniformly due to all the out-of-focus object planes contributing to each image. Therefore, for each plane there are
four parameters to be estimated, which will be jointly denoted byΘk: Θk = (µk, f0

k , pk, σ2

k).

If we denote byHk−j the operator performing the 2D convolution with PSFhk−j , the convolution product from
Eq. (2) can be rewritten as:

ik ,

N−1
∑

j=0

Hk−joj + nk (8)

whereH is the matrix of the convolution product. The mean of an imageplanek is given by :

ik =
N−1
∑

j=0

hk−j ⋆ oj , (9)

whereoj is the mean of the object planej. In practice we takeoj = 0 ∀j, so thatik = 0 too. The covariance matrix of
image planek is given by:

Cik
=

N−1
∑

j=0

Hk−jCoj
H

t
k−j + Cnk

(10)

whereCoj
is the covariance matrix of the object planej andCnk

is the covariance matrix of image planek.

Becauseoj − oj is assumed stationary, the object covariance matrixCoj
is Toeplitz (more precisely, block-Toeplitz

with Toeplitz blocks). Because the noise’s covariance matrix is Cnk
= σ2

k.I, the image covariance matrixCik
is Toeplitz

too. Thus all matrices of Eq. (10) are approximately diagonalized by fast Fourier transforms (FFT), which yields the
following expression for the PSDSik

of imageik:

Sik
(f, Θk) =

N−1
∑

j=0

∣

∣

∣h̃k−j

∣

∣

∣

2

Soj
(f, Θj) + Snk

(f, Θk) (11)

Because only transfer functions̃hk−j close to focus (k − j ≃ 0) carry high frequency information, the latter equation
can be approximated by:

Sik
(f, Θk) ≃





N−1
∑

j=0

∣

∣

∣h̃k−j

∣

∣

∣
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Sok
(f, Θk) + Snk

(f, Θk) (12)



except at very low frequencies.

With the above Gaussian model for the object prior probability distribution and for the noise distribution, Eq. (8) shows
that the probability distribution of each image plane is Gaussian too. The likelihood of imageik is given by:

p(ik|Θk) =
1

(2π)N/2
√

det(Cik
)
. exp

[

1

2
(ik − ik)tCi

−1

k (ik − ik)

]

(13)

The negative log-likelihood is thus given by :

L(Θk) = − ln(p(ik|Θk) =
1

2

∑

f

ln(Sik
(f, Θk)) +

1

2

∑

f

∣

∣

∣ĩk(f) − ĩk(f)
∣

∣

∣

2

Sik
(f, Θk)

(14)

whereik is given by Eq. (9) andSik
(f, Θk) by Eq. (12).

Finally, for each image plane we are able to determine the three object PSD parameters by minimizingL(Θk) numeri-
cally, as a function ofΘk = (µk, f0

k , pk, σ2

k). These parameters can then be used in the deconvolution.

4. VALIDATION ON SIMULATED DATA

4.1. Simulated object and images

In order to validate our deconvolution method by simulations, we created a simulated object which complies with the
overall structure of a retina. Figure2 represents the original simulated object, composed of vessels, ganglion cells and
photo-receptors. The vessels are simulated by moving a ringin a random walk, the ganglion cells are simulated by empty
globes and photo-receptors are represented by two empty half spheres joined by an empty tube. The cube presented on
Figure2 is 300 µm x300 µm x300 µm.

Figure 2. Perspective view of the 3D object used for the simulations.

In the simulations presented here, we use a five slice object obtained by averaging the data from Figure2 into five
13 µm-thick slices from which we select a128× 128 region of interest. The five slices obtained are presented onFigure3.
The PSF’s used to compute the 3D imagei are currently purely diffractive. They are generated with aset of aberrations
expanded on the Zernike basis; we use0.2 rd RMS of one astigmatism (Z5), −0.1 rd RMS of the other astigmatism (Z6)
and−0.5 rd RMS of spherical aberration (Z11). These PSF’s are oversampled, with respect to the Nyquist frequency, by
a factor of1.5. With the object and the PSF, we simulate the image by means ofEquation (2). The noise added is white



Figure 3. The five object layers ( black corresponds to0 ph/pix).

Figure 4. The five image layers.

Gaussian and stationary; its standard deviation is3% of the maximum intensity in the objecto (corresponding roughly
to 1000 photo-electrons per pixel for photon-limited data). The five image layers are presented on Figure4. From these
images, it is clear that all object slices contribute to all images. With the relatively small chosen separation betweenplanes
(13 µm), the two first images are visually very similar whereas the corresponding object slices are very different. The
deconvolution aims at disentangling the contribution of the different object slices (i.e., improving the axial resolution) and
at improving the lateral resolution within each plane.

4.2. Unsupervised PSD estimation

We now want to validate the unsupervised PSD estimation method by simulations. A comparison between the “true”
object PSD and the estimated object PSD is given on Figures5 and6. On Figure5 one can see that the PSD estimated
from the first image plane is quite close to the “true” object PSD, which is fitted from the first object plane. One notices
an overestimation of the low frequencies by our method but the intermediate and high frequencies are correctly estimated.
And these frequencies are the ones that are important for theobject reconstruction: the regularization hardly mattersfor
the very low frequencies.

Figure6 illustrates how well the unsupervised estimation method isable to separate the noise PSD and the object PSD
from the empirical image PSD. The quality of the object PSD estimation with our method is perfectly compatible with the
3D deconvolution method as we can see in the next section.

The quality of theµ parameter estimation is studied by plotting the restoration error of the 3D object versus the value
of µ relative to the estimated value. Figure7 and8 show these plots for a 3D deconvolution without and with positivity
constraint respectively. We can observe that without positivity constraint the optimal value ofµ is the estimated value.
With the positivity constraint, it is necessary to under-regularize the deconvolution because the positivity constraint is itself
a regularization. In practice we can take forµ the estimated value divided by 10.

4.3. Restoration of simulated data

In this section, we present two results obtained with our 3D unsupervised deconvolution method. The first simulation,
presented on Figure9 and the second, presented on Figure10, shows the deconvolution results obtained withL2 regular-
ization without and with positivity constraint respectively. The object PSD is automatically estimated by our method.We



DSPo
"True" DSPo

Figure 5. Assessment of the object’s PSD estimation quality. The black dashed line plot corresponds to the true object’s PSD fitted
directly on the object, the black dotted line plot corresponds to the empirical true object’s PSD and the green plot corresponds to the
object’s PSD estimated from the image with our method.

n

Figure 6. Empirical PSD of the first image plane (solid black line) and its fit by our parametric image PSD model (red line). The latter
is the sum of an object contribution (green dashed line) and anoise contribution (blue dashed line), estimated jointly by our method.
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Figure 7. Plot of the 3D object restoration error without positivity constraint versus the relativeµ value.
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Figure 8. Plot of the 3D object restoration error with positivity constraint versus the relativeµ value.



can see ghosts of vessels (in the middle plane for example) onFigure9 and a residual blur: the missing cone of 3D frequen-
cies makes it difficult for the restoration procedure to correctly disentangle the contribution of all planes. The positivity
constraint used in Figure10 helps the algorithm disentangle the different planes and visibly reduces ghosts of vessels in
middle plane. More quantitatively, the RMS restoration error is8.34 ph/pix with the positivity constraint and10.31 ph/pix
without (the object average level is15.34 ph/pix).

Figure 9. The five estimated object layers withL2 regularization without positivity constraint.

Figure 10. The five estimated object layers withL2 regularization under positivity constraint ( black corresponds to0 ph/pix).

5. VALIDATION ON EXPERIMENTAL DATA

5.1. Experimental bench

To validate our 3D deconvolution method, we developed a new 3D optical bench at ONERA. This bench works without
adaptive optics to simplify the image acquisition and just focus in the deconvolution problems. The experimental setupis
shown on Figure11.

3D object

Lens (L2)Lens (L1) Diaphragm (P) Lens (L3) Lens (L4)

Detector

Figure 11. 3D imaging bench.

Some specifications of our bench are:

1. the images must be at least Shannon-sampled;

2. the detector must be translated in an automated way along the optical axis;



3. the aberrations must be the same in the field (no anisoplanatism).

The bench presented on Figure11 takes into account all these constraints.L1 is a microscope objective (16X, NA=0.32);
L2 is a biconvex lens (f = 62.9 mm andd = 25.4 mm); P is the pupil of the system;L3 andL4 perform a re-imaging of
the object through the diaphragm P. We can use two objects with our bench: a pinhole (1 µm diameter) to measure the 3D
PSF, and a micrometer rule tilted with respect to the opticalaxis (by 35 degrees) as a 3D object.

5.2. Restoration of experimental data

We present here the rule images and the 3D PSF. The 3D rule image has 30 different planes. The Figure12 presents two
planes, taken at two different depths (the distance betweenthe two planes is3.2 cm).

Figure 12. Two planes of the 3D rule image. On the left, the detector is focused at the very top of the rule. On the right, the detector is
focused on about one quarter of the image from the top of the rule.

We performed an unsupervised 3D deconvolution of this 3D image of the rule with the PSD model introduced in
section3 and the positivity constraint. The object PSD is estimated from each image plane with the method presented in
section3. With the positivity constraint, the parameterµ is divided by 10 in practice as shown in simulations. One can
notice on Figure13 the lateral resolution increase due to the deconvolution method (the width of each line is 6 pixel in an
image and only 1 pixel on the solution). The restored width iscompatible with real dimensions of the rule because each line
is about1 µm wide. This restored object is very encouraging and demonstrates the effectiveness of our 3D unsupervised
deconvolution method.

6. CONCLUSION AND PERSPECTIVES

A 3D deconvolution method has been derived in a Bayesian framework for the restoration of adaptive-optics corrected
images of the human retina; it incorporates a positivity constraint and a regularization metric in order to avoid uncontrolled
noise amplification. An unsupervised method has been proposed to estimate the 3D object PSD from the 3D image and
the 3D PSF. We have demonstrated the effectiveness of the method, on realistic simulated data and on experimental data
obtained the 3D optical bench developed at ONERA.

Future work includes the processing of adaptive-optics corrected retinal images. For this purpose, it is of paramount
importance to estimate the PSF precisely in order not to produce deconvolution artefacts. This can be achieved by recon-
structing the residual wavefront from the wavefront sensordata of the adaptive-optics loop.



Figure 13. Two object planes restored with positivity constraint. On the left, the detector is focused at the very top of the rule. Onthe
right, the detector is focused on about one quarter of the image from the top of the rule.
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