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ABSTRACT

High resolution wide-field imaging of the human retina cétlsa 3D deconvolution. In this communication, we report
on a regularized 3D deconvolution method, developed in a&Biay framework in view of retinal imaging, which is fully
unsupervised,e., in which all the usual tuning parameters, a.k.a. “hypeaapeeters”, are estimated from the data. The
hyper-parameters are the noise level and all the parametersuitably chosen model for the object’s power spectral
density (PSD). They are estimated by a maximum likelihood)Method prior to the deconvolution itself.

This 3D deconvolution method takes into account the 3D eatdithe imaging process, can take into account the
non-homogeneous noise variance due to the mixture of plaridretector noises, and can enforce a positivity constrain
on the recovered object. The performance of the ML hypeaipater estimation and of the deconvolution are illustrated
both on simulated 3D retinal images and on non-biologicaégPerimental data.

Keywords: 3D deconvolution, retinal imaging, three-dimensionalmscopy, hyper-parameter estimation, unsupervised
estimation, regularization, inverse problems.

1. INTRODUCTION

Early detection of pathologies of the human retina call forimvivo exploration of the retina at the cell scale. Direct
observation from the outside suffers from the poor opticalidy of the eye. The time-varying aberrations of the eye ca
be compensatea posterioriif measured simultaneously with the image acquisitiors technique is known adeconvo-
lution from wavefront sensiddg and has been successfully applied to the human rétifiaese aberrations can also be
compensated for in real-time, by use of adaptive optics (A®t, the correction is always partiai! Additionally, the
object under examination (the retina) is three-dimendi(@ia) and each recorded image contains contributions frioen t
whole object’s volume. For these two reasons, a deconweuluti the recorded images is necessary.

In two-dimensional (2D) deconvolution, each image is deobred separately,e., only one object plane is assumed
to contribute to each image. This is an appropriate imageefiadastronomy for instance, but is a crude approximation
in microscopy, as it does not properly account for the haleanoh image that comes from the parts of the observed object
that are out-of-focus.

Three-dimensional deconvolution is an established teglein microscopy, and in particular in conventional flueres
cence microscopy.The combination of a conventional microscope with decamioh is often referred to as deconvolu-
tion microscopy or even “digital confocal”, because the os8D deconvolution can notably improve the resolution @& th
recorded conventional images, especially in the longitaldia.k.a. axial) dimension, while remaining simpler ahdaper
than a confocal microscope. Yet, to the best of our knowledgeonvolution of retinal images has so far been performed
with 2D deconvolution techniques, both in deconvolutianirwavefront sensirfgand in deconvolution of AO-corrected
images’

Besides, because deconvolution is an ill-posed inverdggm®-*?> most modern deconvolution methods use regular-
ization in order to avoid an uncontrolled amplification o thoise.
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2. 3D DECONVOLUTIONMETHOD

The image formation is modeled as a 3D convolution:
i=hko+n 1)
wherei is the (3D) pile of (2D) recorded images,s the 3D unknown observed objeat,s the 3D point spread function

(PSF),n is the noise angke denotes the 3D convolution operator.
For a system withV images ofN object planes, this 3D convolution can be rewritten as:

N-1

=Y hijxo; | +ny )
j=0

whereo; is the object in plang, ¢, is thek-th recorded imagéey.—; is the 2D PSF corresponding to a defocugiof- j)
slices, andk denotes the 2D convolution operator. The PSF is that of teesycomposed of the eye, the imaging system
(including the AO) and the detector. We assume that the wiedlerding process is fast enough so that the different 2D
PSF’s differ only by a defocus. Figufellustrates the imaging process in the case of three objetiraage planes.

Retina System Detector

Figure 1. lllustration of 3D imaging of the retina for 3 object planéhe observed 3D object is on the left and one plané,;, of the
3D imagei is represented on the right. All object planes contributeaoh image plane.

Note that the raw image must be carefully pre-processedtid gin image that closely follows this imaging model. The
pre-processing includes the relative registration of the image$® and an image tapering in order to reduce the artefacts
due to the periodization done by fast Fourier transforms gbal is to obtain an estimadeof the observed 3D objeet
given the images, the 3D PSFh, and some prior information on the noise statistics and erothject.

2.1. Framework

Most deconvolution techniques boil down to the minimizat{or maximization) of a criterion. An important task is the
definition of a suitable criterion for the given inverse pleii.

Following the Bayesialt MaximumA Posteriori(MAP) approach, the deconvolution problem can be statedl&sis:
we look for the most likely objead given the observed imageand our prior information ow, which is summarized by a
probability densityp(o). This reads:

0 = argmax p(o|i) = argmax p(i|o) X p(o). 3)

Equivalentlyo can be defined as the object that minimizes a compound orité(io) defined as follows:

J(O) :Ji(o)+Jo(0)7 (4)



where the negative log-likelihoofl = — In p(i|o) is a measure of fidelity to the data afid= — In p(0) is a regularization

or penalty term, so the MAP solution can equivalently beezhlh penalized-likelihood solution. Note that the Bayesian
approach does not require thatruly be the outcome of a stochastic process; rafier) should be designed to embody
the available prior information on, which means thaf, should have higher values for objects that are less conipatib
with our prior knowledgé e.g. that are very oscillating.

Wheno is not the outcome of a stochastic procegsusually includes a scaling factor or global hyper-paramete
denoted by in the following, which adjusts the balance between fiddtityhe data and fidelity to the prior information.
Because the optimal balance between data and prior departlde @ux of each object plane, in the following we propose
a regularization term with one such hyper-paramptarobject plane. And we shall show in Secti8rhow to estimate
these hyper-parameters.

2.2. Object prior

The choice of a Gaussian prior probability distributiontiee object can be justified from an information theory stamdp
as being the least informative, given the first two momentbefdistribution.

Additionally, we assume that the different object planes iadependent because firstly, the retina is composed of
potentially very different slices, and secondly we woulgtlto improve the axial resolution in the restored objecticivh
would be hampered by a regularization in the axial dimensitdme regularization criterion is thus quadratic (dr2” in
short) and given by:

gt a(f) - alh)|
Jo(O) = 5 Z (Z %) (5)

wheresS,, is the 2D power spectral density (PSD) of object plane

A reasonable model of the PSD of each object plane can be ¥band used with potentially different parameters for
each plane in the above equation. It reads:

Sor(f) = — (6)

w1+ (5)")

where

 u; is inversely proportional to the energy of object pldne

 p; characterizes the spectral richness of object planim practice p goes fron0 for point like objects tot for very
smooth extended objects;

« f? represents the inverse of the 2D object size for finite supggjects. This parameter is very difficult to adjust by
hand for objects extended beyond the field of view.

With such a fine PSD model per plare X N P parameters folV P object planes), the MAP method can optimally
adjust the balance between the resolution and the robsstoemise not only for each plane feach spatial frequency
in each planeprovided the PSD model parameters are correctly tunedingall these hyper-parameters in a supervised
fashion (.e., manually) is unrealistic, so we developed a method to egérthese hyper-parameters in an unsupervised
way directly from the data, before performing the decontiolu Before we derive this method in SectiBnin the next
subsection we give some details about the noise model thratagporated into our method.



2.3. Noise model

The noise is a mixture of photon noise and detector noisetdAhwise is non-stationary, white, Poisson-distributed a

can be well modeled as non stationary white Gaussian as sabe &ux level is a few tens of photo-electrons per pizel.
Detector noise is, to a good approximation, stationary evi@iaussian, so the sum of these two noises can reasonably be
modeled as non stationary white Gaussian. The neg-lotjHded of the data is thus the following weighted least-squa
difference between the actual datand our model of the data for a given objdets o:

N—1Npiz—1 N-1 2

Ji(o) = % > —i(p.q) = Y bt <0l (p,) (7)

2
k=0 p,g=0 k(P 0) 1=0

3. UNSUPERVISED HYPER-PARAMETER ESTIMATION

In this section, we estimate the parameters of the objectSD By Maximum Likelihood (ML). The proposed procedure
is an extension to 3D imaging of the method developed by Béat in the context of phase diversity wavefront-sensfng
and applied by Gratadoet al. to the restoration of AO-corrected astronomical imatfedlith the parametric PSD model

of Eq. (6), the 3D object PSD is determined by three parameters pecbpjane. In this subsection (and only here), we
make the additional approximation that the noise is statiprof variancerZ, within each image plank; this makes the
object PSD estimation much more tractable, and is justifiethb fact that the images considered here are illuminated
rather uniformly due to all the out-of-focus object planesitibuting to each image. Therefore, for each plane thexe a
four parameters to be estimated, which will be jointly dexdby©y: O = (ux, £, pr, o2).

If we denote byH._; the operator performing the 2D convolution with P&F_;, the convolution product from
Eqg. (2) can be rewritten as:

N-1
= Z Hj_jo0; +ny (8)
i=0

whereH is the matrix of the convolution product. The mean of an implgeek is given by :
. N—-1
i = Z hj—j x 05, 9)
=0

whereo; is the mean of the object plape In practice we tak®; = 0 V3, so thati;, = 0 too. The covariance matrix of
image plané: is given by:
N—
Ciy =Y Hy jCoHj_;+Cy, (10)
j=0

—

whereC,; is the covariance matrix of the object planandC;,, is the covariance matrix of image plahe

Becausen; — o5 is assumed stationary, the object covariance madlrixis Toeplitz (more precisely, block-Toeplitz
with Toeplitz blocks). Because the noise’s covariance &rC,,, = o3.1, the image covariance matr&;, is Toeplitz
too. Thus all matrices of Eq1Q) are approximately diagonalized by fast Fourier trans®(iFT), which yields the
following expression for the PS[B;, of imagezy:

N—-1

511,000 = Y- [fus| 0,(£,05) + 5., (£, 04) )

=0

Because only transfer functioﬁsc,j close to focusk — 5 ~ 0) carry high frequency information, the latter equation
can be approximated by:

N-1

S (.00~ [ 3 [hics|

Jj=0

SOk(fa Gk)+5nk(f’ Gk) (12)




except at very low frequencies.

With the above Gaussian model for the object prior probidlistribution and for the noise distribution, E&) 6hows
that the probability distribution of each image plane is &ian too. The likelihood of imagk is given by:

. . 1 N 1 . T\t .71 . -
p(ik|Ok) = (2m) /2 dct(Cik)'pr |:2(’Lk i) Cip (T zk)} (13)
The negative log-likelihood is thus given by :
L(©k) = —In(p(ix|Ok) = lz In(S;, (f,Or)) + ! > M (14)
2 7 lk 2 7 zk fa Gk)

wherei,, is given by Eq. 9) andS;, (f, ©x) by Eq. (L2).

Finally, for each image plane we are able to determine theetbbject PSD parameters by minimizib{©y,) numeri-
cally, as a function 00y, = (u, f7, pk, o). These parameters can then be used in the deconvolution.

4. VALIDATION ON SIMULATED DATA
4.1. Simulated object and images

In order to validate our deconvolution method by simulasiowe created a simulated object which complies with the
overall structure of a retina. Figu2represents the original simulated object, composed ofelgsganglion cells and
photo-receptors. The vessels are simulated by moving amiagandom walk, the ganglion cells are simulated by empty
globes and photo-receptors are represented by two emptgptagres joined by an empty tube. The cube presented on
Figure2 is 300 pm x300 pm x 300 pm.

Figure 2. Perspective view of the 3D object used for the simulations.

In the simulations presented here, we use a five slice objgeaireed by averaging the data from Fig@énto five
13 um-thick slices from which we selectl@8 x 128 region of interest. The five slices obtained are presentdeigure3.
The PSF’s used to compute the 3D imagare currently purely diffractive. They are generated witbed of aberrations
expanded on the Zernike basis; we Oserd RMS of one astigmatismZ;), —0.1 rd RMS of the other astigmatisn¥§)
and—0.5rd RMS of spherical aberratior?(;). These PSF’s are oversampled, with respect to the Nyqeiguéncy, by
a factor of1.5. With the object and the PSF, we simulate the image by meaRsgwdtion ). The noise added is white



Figure 3. The five object layers ( black correspond<tph/pix).

Figure 4. The five image layers.

Gaussian and stationary; its standard deviatiodf’isof the maximum intensity in the objeet (corresponding roughly
to 1000 photo-electrons per pixel for photon-limited data). Thefilmage layers are presented on Figdrd-rom these
images, it is clear that all object slices contribute tomldges. With the relatively small chosen separation betypéares
(13 um), the two first images are visually very similar whereas torresponding object slices are very different. The
deconvolution aims at disentangling the contribution ef different object slices.g., improving the axial resolution) and
at improving the lateral resolution within each plane.

4.2. Unsupervised PSD estimation

We now want to validate the unsupervised PSD estimation adelly simulations. A comparison between the “true”
object PSD and the estimated object PSD is given on Figueesl6. On Figure5 one can see that the PSD estimated
from the first image plane is quite close to the “true” objeSCR which is fitted from the first object plane. One notices
an overestimation of the low frequencies by our method heifritermediate and high frequencies are correctly estithate
And these frequencies are the ones that are important faslifeet reconstruction: the regularization hardly matfers
the very low frequencies.

Figure6 illustrates how well the unsupervised estimation methabie to separate the noise PSD and the object PSD
from the empirical image PSD. The quality of the object PSfimestion with our method is perfectly compatible with the
3D deconvolution method as we can see in the next section.

The quality of theu, parameter estimation is studied by plotting the restonagigor of the 3D object versus the value
of i relative to the estimated value. Figufeand8 show these plots for a 3D deconvolution without and with fasy
constraint respectively. We can observe that without pdtsitconstraint the optimal value gf is the estimated value.
With the positivity constraint, it is necessary to undegriarize the deconvolution because the positivity comstiaitself
a regularization. In practice we can take fothe estimated value divided by 10.

4.3. Restoration of simulated data

In this section, we present two results obtained with our 3Bupervised deconvolution method. The first simulation,
presented on Figur@ and the second, presented on FiglilBeshows the deconvolution results obtained withregular-
ization without and with positivity constraint respectizeThe object PSD is automatically estimated by our methid.
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Figure 5. Assessment of the object's PSD estimation quality. Thekbtkshed line plot corresponds to the true object's PSD fitted
directly on the object, the black dotted line plot correggmio the empirical true object's PSD and the green plot spords to the
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3D deconvolution without positivity constraint. Noise: 3%
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Figure 7. Plot of the 3D object restoration error without positivitgrestraint versus the relativevalue.

3D deconvolution with positivity constraint. Noise: 3%
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Figure 8. Plot of the 3D object restoration error with positivity coraént versus the relative value.



can see ghosts of vessels (in the middle plane for examplejpame9 and a residual blur: the missing cone of 3D frequen-
cies makes it difficult for the restoration procedure to eotly disentangle the contribution of all planes. The pasjt
constraint used in Figurg0 helps the algorithm disentangle the different planes asiblyi reduces ghosts of vessels in
middle plane. More quantitatively, the RMS restoratioroeis 8.34 ph/pix with the positivity constraint anth.31 ph/pix
without (the object average level 15.34 ph/pix).

Figure9. The five estimated object layers wifl2 regularization without positivity constraint.

Figure 10. The five estimated object layers wifl2 regularization under positivity constraint ( black copends ta) ph/pix).

5. VALIDATION ON EXPERIMENTAL DATA
5.1. Experimental bench

To validate our 3D deconvolution method, we developed a nevegtical bench at ONERA. This bench works without
adaptive optics to simplify the image acquisition and jesis in the deconvolution problems. The experimental sistup
shown on Figurd 1

[ERE IPPTEEE == ———e
3Dobject\\‘ 77777777777777777 R B B Detector
Lens (L1) Lens (L2) Diaphragm (P) Lens (L3) Lens (L4)

Figure 11. 3D imaging bench.

Some specifications of our bench are:

1. the images must be at least Shannon-sampled;

2. the detector must be translated in an automated way ahenggtical axis;



3. the aberrations must be the same in the field (no anisdjgana

The bench presented on Figurgtakes into account all these constraints.is a microscope objective (16X, NA=0.32);
Lo is a biconvex lensf{ = 62.9 mm andd = 25.4 mm); P is the pupil of the systeni;; and L, perform a re-imaging of
the object through the diaphragm P. We can use two objedbsamit bench: a pinholel (um diameter) to measure the 3D
PSF, and a micrometer rule tilted with respect to the optgéd (by 35 degrees) as a 3D object.

5.2. Restoration of experimental data

We present here the rule images and the 3D PSF. The 3D ruleeilvey30 different planes. The Figur2 presents two
planes, taken at two different depths (the distance betweetwo planes i§.2 cm).

Figure 12. Two planes of the 3D rule image. On the left, the detectordsi$ed at the very top of the rule. On the right, the detector is
focused on about one quarter of the image from the top of tlee ru

We performed an unsupervised 3D deconvolution of this 3Dgenaf the rule with the PSD model introduced in
section3 and the positivity constraint. The object PSD is estimatechfeach image plane with the method presented in
section3. With the positivity constraint, the parametetis divided by 10 in practice as shown in simulations. One can
notice on Figurel3the lateral resolution increase due to the deconvolutiothate(the width of each line is 6 pixel in an
image and only 1 pixel on the solution). The restored widtoisipatible with real dimensions of the rule because eaeh lin
is aboutl um wide. This restored object is very encouraging and deirates the effectiveness of our 3D unsupervised
deconvolution method.

6. CONCLUSION AND PERSPECTIVES

A 3D deconvolution method has been derived in a Bayesiandwaork for the restoration of adaptive-optics corrected
images of the human retina; it incorporates a positivitystaaint and a regularization metric in order to avoid uncolte:d
noise amplification. An unsupervised method has been peaptmsestimate the 3D object PSD from the 3D image and
the 3D PSF. We have demonstrated the effectiveness of tHeothedn realistic simulated data and on experimental data
obtained the 3D optical bench developed at ONERA.

Future work includes the processing of adaptive-opticsexbed retinal images. For this purpose, it is of paramount
importance to estimate the PSF precisely in order not toygredieconvolution artefacts. This can be achieved by recon-
structing the residual wavefront from the wavefront sertaia of the adaptive-optics loop.



Figure 13. Two object planes restored with positivity constraint. @a teft, the detector is focused at the very top of the rule tl@n
right, the detector is focused on about one quarter of thg@fieom the top of the rule.
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