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ABSTRACT

We report on a deconvolution method developed in a Bayesian framework for adaptive-optics corrected images of the
human retina. The method takes into account the three-dimensional nature of the imaging process; it incorporates a
positivity constraint and a regularization metric in orderto avoid uncontrolled noise amplification. This regularization
metric is designed to simultaneously smooth noise out and preserve edges, while staying convex in order to keep the
solution unique. We demonstrate the effectiveness of the method, and in particular of the edge-preserving regularization,
on realistic simulated data.
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1. INTRODUCTION

Early detection of pathologies of the human retina call for an in vivo exploration of the retina at the cell scale. Direct
observation from the outside suffers from the poor optical quality of the eye. The time-varying aberrations of the eye can
be compensateda posterioriif measured simultaneously with the image acquisition; this technique is known asdeconvo-
lution from wavefront sensing1, 2 and has been successfully applied to the human retina.3 These aberrations can also be
compensated for in real-time, by use of adaptive optics (AO).4 Yet, the correction is always partial.5, 6, 7 Additionally,
the object under examination (the retina) is three-dimensional (3D) and each recorded image contains contributions from
the whole object’s volume. For these two reasons, a deconvolution of the recorded images is necessary.

In two-dimensional (2D) deconvolution, each image is deconvolved separately,i.e., only one object plane is assumed
to contribute to each image. This is an appropriate image model in astronomy for instance, but is a somewhat crude
approximation in microscopy, as it does not properly account for the halo in each image that comes from the parts of the
observed object that are out-of-focus.

Three-dimensional deconvolution is an established technique in microscopy, and in particular in conventional fluores-
cence microscopy.8 The combination of a conventional microscope with deconvolution is often referred to as deconvo-
lution microscopy or even “digital confocal”, because the use of 3D deconvolution can notably improve the resolution of
the recorded conventional images, especially in the longitudinal dimension, while remaining simpler and cheaper thana
confocal microscope. Yet, to the best of our knowledge, deconvolution of retinal images has so far been performed with 2D
deconvolution techniques, both in deconvolution from wavefront sensing3 and in deconvolution of AO-corrected images.9

Besides, because deconvolution is an ill-posed inverse problem,10, 11, 12 most modern deconvolution methods use
regularization in order to avoid an uncontrolled amplification of the noise. The regularization that is commonly used in
3D deconvolution is the classical Tikhonov regularization, which is quadratic (see Sect.3) and thus tends to oversmooth
edges.

In this communication, we introduce an edge-preserving regularization into a 3D deconvolution method and apply it to
simulated retinal images.
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2. PROBLEM FORMULATION

The image formation is modelled as a 3D convolution:

i = h ? o + n (1)

wherei is the (3D) pile of (2D) recorded images,o is the 3D unknown observed object,h is the 3D point spread function
(PSF),n is the noise and? denotes the 3D convolution operator.

For a system withN images ofN object planes, this 3D convolution can be rewritten as:

ik =





N−1
∑

j=0

hk−j ? oj



 + nk (2)

whereoj is the object in planej, ik is thek-th recorded image andhk−j is the 2D PSF corresponding to a defocus of(k−j)
slices. The PSF is that of the system composed of the eye, the imaging system (including the AO) and the detector. We
assume that the whole recording process is fast enough so that the differents 2D PSF’s differ only by a defocus. Figure1
illustrates the imaging process in the case of three object and image planes.
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Figure 1. Illustration for 3 object planes.� is on the left and
�

is on the right.ϕd is the defocus phase.

Note that the raw image must be carefully preprocessed to yield an image that closely follows this imaging model. The
preprocessing includes the relative recentering of the rawimages13 and an image tapering in order to reduce the artefacts
due to the periodization done by fast Fourier transforms. The goal is to obtain an estimatêo of the observed 3D objecto
given the imagesi, the 3D PSFh, and some prior information on the noise statistics and on the object.

3. DECONVOLUTION APPROACH

3.1. Framework

Most deconvolution techniques boil down to the minimization (or maximization) of a criterion. An important task is the
definition of a suitable criterion for the given inverse problem.

Following the Bayesian12 MaximumA Posteriori(MAP) approach, the deconvolution problem can be stated as follows:
we look for the most likely object̂o given the observed imagei and our prior information ono, which is summarized by a
probability densityp(o). This reads:

ô = argmax
o

p(o|i) = arg max
o

p(i|o) × p(o). (3)



Equivalentlyô can be defined as the object that minimizes a compound criterionJ(o) defined as follows:

J(o) = Ji(o) + Jo(o), (4)

where the negative log-likelihoodJi = − ln p(i|o) is a measure of fidelity to the data andJo = − ln p(o) is a regularization
or penalty term, so the MAP solution can equivalently be called a penalized-likelihood solution. Note that the Bayesian
approach does not require thato truly be the outcome of a stochastic process; rather,p(o) should be designed to embody
the available prior information ono, which means thatJo should have higher values for objects that are less compatible
with our prior knowledge,11 e.g. that are very oscillating. Wheno is not the outcome of a stochastic process,Jo usually
includes a scaling factor or global hyperparameter, denoted by µ in the following, which adjusts the balance between
fidelity to the data and fidelity to the prior information.

If no prior knowledge is used, which corresponds to settingp(o) = constant in Equation (3), one then maximizes
p(i|o) (likelihood of the data) so that the solution is a maximum-likelihood (ML) solution. In this case the criterion of
Eq. (4) is only constituted of the termJi. The Richardson-Lucy algorithm,14 also known as ML-EM (for Maximum
Likelihood–Expectation Maximization) is an example of an iterative algorithm which converges towards the minimum of
Ji when the noise follows Poisson statistics.

3.2. Noise model

If the noise statistics are additive, stationary, white Gaussian, then the data fidelity term is a simple least-square difference
between the actual datai and our model of the data for a given object,h ? o:

Ji(o) =
∑

l,m,n

1

2σ2
[i(l, m, n) − (h ? o)(l, m, n)]

2
, (5)

whereσ2 is the total noise variance. In reality, the noise is actually a mixture of non-stationary, Poisson-distributed, photon
noise and stationary white Gaussian detector noise. Yet, photon noise statistics can be effectively approximated as non-
stationary white Gaussian as soon as the flux level is a few tens of photo-electrons per pixel.15 Additionally, because
the images considered here are illuminated rather uniformly (due to all the out-of-focus object planes contributing toeach
image), a stationary white Gaussian statistics, with a constant variance equal to the mean number of photo-electrons per
pixel, is a reasonable approximation for the noise model.

3.3. Object prior

This section aims at deriving an object prior for objects that are either smooth or piecewise smooth.

The choice of a Gaussian prior probability distribution forthe object can be justified from an information theory
standpoint as being the least informative, given the first two moments of the distribution. In this case, a reasonable model
of the object’s power spectral density (PSD) can be found16 and used to derive the regularization criterionJo, which is
then quadratic (or “L2” in short). Additionally, the parameters of the object’s PSD can be estimated automatically (i.e., in
an unsupervised way) from the data itself by a Maximum Likelihood method.17

The disadvantage of a Gaussian prior (or equivalently of a quadratic regularization term), especially for objects with
sharp edges such as photoreceptors or vessels, is that it tends to over-smooth edges. A possible remedy is to use an
edge-preserving prior that is quadratic for small gradients and linear for large ones.18 The quadratic part ensures a good
smoothing of the small gradients (i.e., of noise), and the linear behavior cancels the penalization of large gradients (i.e., of
edges), as explained by Bouman and Sauer.19 Such priors are called quadratic-linear, orL2–L1 in short.20 Here we use
a function that is an isotropic version of the expression suggested by Rey21 in the context of robust estimation, used by
Brette and Idier22 for image restoration, and recently applied to imaging through turbulence2, 15:

Jo(o) = µ δ2
∑

l,m,n

φ (∇o(l, m, n)/δ) , where (6)

φ(x) = |x| − ln(1 + |x|), (7)

and where∇o(l, m, n) = [∇xo(l, m, n)2+∇yo(l, m, n)2]1/2, and∇xo and∇yo are the object finite-difference gradients
alongx andy, respectively. This functionalJo is indeedL2–L1 becauseφ(x) ≈ x2/2 for x close to0 andφ(x)/|x| → 1



for x → ±∞. Thus, parameterδ is a (soft) threshold, in the sense thatJo switches, at each pixel(l, m, n), between the
quadratic and the linear behaviors depending on whether∇o(l, m, n) is smaller than or greater thanδ.

The global factorµ and the thresholdδ have to be adjusted according to the noise level and the structure of the object.
These two hyperparameters currently have to be adjusted by hand.

The functionalJo is strictly convex becauseφ′′(x) = 1/(1 + |x|)2 > 0 andJi of Eq. (5) is convex because it is
quadratic, so that the global criterionJ = Ji + Jo is strictly convex. This ensures uniqueness and stability of the solution
with respect to noise and also justifies the use of a gradient-based method for the minimization.

4. VALIDATION ON SIMULATED DATA

4.1. Simulation

Figure2 represents the original simulated object, composed of vessels, ganglion cells and photoreceptors. The vessels are
simulated by moving a ring in a random walk, the ganglion cells are simulated by empty globes and photoreceptors are
represented by two empty half spheres joined by an empty tube. The cube’s height on Figure2 is approximatively300µm
and the depth and the width of this cube is301 pixels.

Figure 2. Perspective view of the 3D object used for the simulations

In order to create our simulated images with a five slice object, we average the data from Figure2 into five60µm-thick
slices. Additionally, in the simulations presented here, we only use a128 × 128 region of the301 × 301 volume. The five
slices obtained are presented on Figure3.

The PSF’s used to compute the imagei are generated with time-invariant aberrations expanded onthe Zernike basis;
we use0.2 rd of astigmatism (Z5), −0.1 rd of astigmatism (Z6) and−0.5 rd of spherical aberration (Z11). These PSF’s
are oversampled (with respect to the Nyquist frequency) by afactor of1.5. With the object and the PSF, we simulate the
image by means of Eq. (2). The noise added is white Gaussian and stationary; its standard deviation is3% of the maximum
intensity in the objecto. The five image layers are presented on Figure4. From these images, it is clear that all object
slices contribute to all images (in particular the vessels). The deconvolution aims at disentangling the contributionof each
object slice and at improving the resolution within each plane.



Figure 3. The five object layers (�).

Figure 4. The five image layers (
�
).

4.2. Restoration

In this section, we present three results obtained with our deconvolution method:

L2 regularization without a positivity constraint: we can seeon Figure5 the five estimated object slices. The restoration
error is10.31 ph/pix (the object is15.34 ph/pix on average). We can see low frequency oscillations and a residual blur: the
missing cone of 3D frequencies makes it difficult for the restoration procedure to correctly disentangle the contribution of
all planes. Edges are not preserved (L2 regularization and no positivity constraint prevents spectral extrapolation).

Figure 5. The five estimated object layers withL2 regularization, without a positivity constraint.

L2 regularization with a positivity constraint: on Figure6 we can see that the positivity constraint helps the algorithm
disentangle the differents planes and visibly reduces the low frequency oscillations. More quantitatively, the restoration
error is8.34 ph/pix. Yet, edges are not well preserved.



Figure 6. The five estimated object layers withL2 regularization and a positivity constraint.

L2–L1 regularization with a positivity constraint: on the Figure7 we can see that the edges are much better preserved
and the separation between the differents planes is also slightly better on the second restored image plane. The restoration
error is6.33 ph/pix.

Figure 7. The five estimated object layers withL2–L1 regularization and a positivity constraint.

To study the influence of the positivity constraint we compute three new piles of images (i) with differents levels of
background and we perform a deconvolution withL2–L1 regularization. In these simulations, we introduce a continuous
background ino and we evaluate the positivity constraint effects on the estimated object̂o. These images are 128×128
pixels and the level of the noise is the same as previously buthere the PSF used is not oversampled. In Figure8 we present
the results on the last slice where we see the photoreceptors; we can see that the positivity constraint helps reduce noise and
ringing in the dark regions of the image,i.e., where it is actually enforced. If the objecto contain a continuous background
(e.g., the diffusion), the positivity constraint is less efficient as shown in the middle and bottom rows of Figure8: the higher
the background, the less efficient the positivity constraint. In short, the use of a positivity constraint, if the objectis on a
dark background, is very effective in filling the cone of missing frequencies.

5. CONCLUSION AND PERSPECTIVES

A 3D deconvolution method has been derived in a Bayesian framework for the restoration of adaptive-optics corrected
images of the human retina; it incorporates a positivity constraint and a regularization metric in order to avoid uncontrolled
noise amplification. The regularization metric simultaneously smoothes noise out and preserves edges, while staying
convex in order to keep the solution unique. We have demonstrated the effectiveness of the method, and in particular of the
edge-preserving regularization, on realistic simulated data.

Future work includes the processing of experimental data. For this purpose, it is of paramount importance to use a PSF
that is a very close approximation of the true one in order notto produce deconvolution artefacts. As this is quite difficult,
another appealing perspective is to use blind (or myopic) deconvolution.
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Figure 8. From left to right, a simulated recorded image, the estimated object with a positivity constraint and the real object. From top
to bottom, data without continuous bakground, with a5% intensity background and with a50% intensity background.
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