3D deconvolution of adaptive-optics corrected retinal imges
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ABSTRACT

We report on a deconvolution method developed in a Bayes&nework for adaptive-optics corrected images of the
human retina. The method takes into account the three-diimeal nature of the imaging process; it incorporates a
positivity constraint and a regularization metric in orderavoid uncontrolled noise amplification. This regulatiza
metric is designed to simultaneously smooth noise out apdegove edges, while staying convex in order to keep the
solution unigue. We demonstrate the effectiveness of thbadeand in particular of the edge-preserving regulaionat

on realistic simulated data.
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1. INTRODUCTION

Early detection of pathologies of the human retina call forirmvivo exploration of the retina at the cell scale. Direct
observation from the outside suffers from the poor opticallify of the eye. The time-varying aberrations of the eye ca
be compensated posterioriif measured simultaneously with the image acquisitiors tachnique is known ageconvo-
lution from wavefront sensidg? and has been successfully applied to the human rétifdaese aberrations can also be
compensated for in real-time, by use of adaptive optics (AQlet, the correction is always partial® 7  Additionally,
the object under examination (the retina) is three-dinmadi(3D) and each recorded image contains contributicrs fr
the whole object’s volume. For these two reasons, a decotiwnlof the recorded images is necessary.

In two-dimensional (2D) deconvolution, each image is deotwed separately,e., only one object plane is assumed
to contribute to each image. This is an appropriate imageemiodastronomy for instance, but is a somewhat crude
approximation in microscopy, as it does not properly actéamthe halo in each image that comes from the parts of the
observed object that are out-of-focus.

Three-dimensional deconvolution is an established teglin microscopy, and in particular in conventional flueres
cence microscopy. The combination of a conventional microscope with decamionh is often referred to as deconvo-
lution microscopy or even “digital confocal”, because tise of 3D deconvolution can notably improve the resolution of
the recorded conventional images, especially in the lodgigl dimension, while remaining simpler and cheaper than
confocal microscope. Yet, to the best of our knowledge, dealation of retinal images has so far been performed with 2D
deconvolution techniques, both in deconvolution from wiawe sensing and in deconvolution of AO-corrected imades.

Besides, because deconvolution is an ill-posed inverselgrg'® ' 12 most modern deconvolution methods use
regularization in order to avoid an uncontrolled amplificatof the noise. The regularization that is commonly used in
3D deconvolution is the classical Tikhonov regularizatisich is quadratic (see Se@&) and thus tends to oversmooth
edges.

In this communication, we introduce an edge-preservingleggation into a 3D deconvolution method and apply it to
simulated retinal images.

Further author information: (Send correspondence to G.C.)
G.C.: E-mail: Guillaume.Chenegros@onera.fr; L.M.M.: BimLaurent.Mugnier@onera.fr; F.L.: francois@maunakeh.com .



2. PROBLEM FORMULATION
The image formation is modelled as a 3D convolution:
it=hxo+mn (1)
wherei is the (3D) pile of (2D) recorded imagasjs the 3D unknown observed objeat,s the 3D point spread function
(PSF),n is the noise and denotes the 3D convolution operator.
For a system withV images of/V object planes, this 3D convolution can be rewritten as:

N-1

b = Z hi—jx0;j | +ng (2)
=0

whereo; is the object in plang, iy, is thek-th recorded image arfd,_; is the 2D PSF corresponding to a defocu$iof j)
slices. The PSF is that of the system composed of the eyemtging system (including the AO) and the detector. We
assume that the whole recording process is fast enough sthéhdifferents 2D PSF's differ only by a defocus. Figadre
illustrates the imaging process in the case of three objettraage planes.
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Figure 1. lllustration for 3 object planes is on the left and is on the right.p, is the defocus phase.

Note that the raw image must be carefully preprocessed ko greimage that closely follows this imaging model. The
preprocessing includes the relative recentering of theimeages? and an image tapering in order to reduce the artefacts
due to the periodization done by fast Fourier transformse gdal is to obtain an estimaéeof the observed 3D objeet
given the images, the 3D PSFh, and some prior information on the noise statistics and erotiject.

3. DECONVOLUTION APPROACH
3.1. Framework

Most deconvolution techniques boil down to the minimizat{or maximization) of a criterion. An important task is the
definition of a suitable criterion for the given inverse pgesh.

Following the Bayesiart MaximumA Posteriori(MAP) approach, the deconvolution problem can be statedl@svs:
we look for the most likely objead given the observed imageand our prior information ow, which is summarized by a
probability densityp(o). This reads:

0 = argmax p(0]i) = arg max p(i|o) x p(o0). 3)



Equivalentlyo can be defined as the object that minimizes a compound oritd(io) defined as follows:
J(0) = J;(o) + J,(0), (4)

where the negative log-likelihoofi = — In p(i|o) is a measure of fidelity to the data afid= — In p(0) is a regularization

or penalty term, so the MAP solution can equivalently beethH penalized-likelihood solution. Note that the Bayesian
approach does not require thatruly be the outcome of a stochastic process; raier) should be designed to embody
the available prior information oa, which means thaf,, should have higher values for objects that are less conipatib
with our prior knowledgée,' e.g. that are very oscillating. Whenis not the outcome of a stochastic procebsusually
includes a scaling factor or global hyperparameter, dehbjeu in the following, which adjusts the balance between
fidelity to the data and fidelity to the prior information.

If no prior knowledge is used, which corresponds to setfifig) = constant in Equation3j, one then maximizes
p(ilo) (likelihood of the data) so that the solution is a maximukelihood (ML) solution. In this case the criterion of
EQ. (@) is only constituted of the ternd;. The Richardson-Lucy algorithid, also known as ML-EM (for Maximum
Likelihood—Expectation Maximization) is an example of grative algorithm which converges towards the minimum of
J; when the noise follows Poisson statistics.

3.2. Noise model

If the noise statistics are additive, stationary, white §€#an, then the data fidelity term is a simple least-squdfereince
between the actual daiaand our model of the data for a given objdets o:

Ji(0) = 3 g il m,n) — (hx o)1, m, ), ©)
l,m,n
whereo? is the total noise variance. In reality, the noise is acyualhixture of non-stationary, Poisson-distributed, photo
noise and stationary white Gaussian detector noise. Yetppmoise statistics can be effectively approximated as no
stationary white Gaussian as soon as the flux level is a fesvaéphoto-electrons per pixél. Additionally, because
the images considered here are illuminated rather unifochle to all the out-of-focus object planes contributing&zh
image), a stationary white Gaussian statistics, with atemmsariance equal to the mean number of photo-electrons pe
pixel, is a reasonable approximation for the noise model.

3.3. Object prior
This section aims at deriving an object prior for objectg Hra either smooth or piecewise smooth.

The choice of a Gaussian prior probability distribution fbe object can be justified from an information theory
standpoint as being the least informative, given the firsttmoments of the distribution. In this case, a reasonablesinod
of the object’s power spectral density (PSD) can be fofirmhd used to derive the regularization criterién which is
then quadratic (or L2” in short). Additionally, the parameters of the object'sdP&n be estimated automaticaliye(, in
an unsupervised way) from the data itself by a Maximum Lhedid method”

The disadvantage of a Gaussian prior (or equivalently ofadratic regularization term), especially for objects with
sharp edges such as photoreceptors or vessels, is thatl# terover-smooth edges. A possible remedy is to use an
edge-preserving prior that is quadratic for small gragiemtd linear for large one$§. The quadratic part ensures a good
smoothing of the small gradientsg,, of noise), and the linear behavior cancels the penalizatidarge gradients.g., of
edges), as explained by Bouman and SatieBuch priors are called quadratic-linear,J&¥—L1 in short?° Here we use
a function that is an isotropic version of the expressiorgssted by Re¥ in the context of robust estimation, used by
Brette and Idiet® for image restoration, and recently applied to imagingulgioturbulencé '°:

Jo(0) = pd*> > ¢(Vo(l,m,n)/5), where (6)
l,m,n
¢(z) = |z|—In(l+|z]), (7

and wher&Vo(l,m,n) = [V,o(l,m,n)?+V,o(l,m,n)?]'/2, andV .0 andV o are the object finite-difference gradients
alongz andy, respectively. This functional, is indeedL2—L1 because)(x) ~ z*/2 for x close to0 and¢(z)/|z| — 1



for x — +oco. Thus, parametef is a (soft) threshold, in the sense thiatswitches, at each pixél, m, n), between the
quadratic and the linear behaviors depending on whéttagt, m, ) is smaller than or greater than

The global factop: and the threshold have to be adjusted according to the noise level and thetgteuof the object.
These two hyperparameters currently have to be adjustedry. h

The functionalJ, is strictly convex becaus¢’(x) = 1/(1 + |z|)> > 0 andJ; of Eq. (6) is convex because it is
quadratic, so that the global criterioh= .J; + J, is strictly convex. This ensures uniqueness and stabiliti@solution
with respect to noise and also justifies the use of a gradiaséd method for the minimization.

4. VALIDATION ON SIMULATED DATA
4.1. Simulation

Figure?2 represents the original simulated object, composed ofl&gsganglion cells and photoreceptors. The vessels are
simulated by moving a ring in a random walk, the ganglionscalie simulated by empty globes and photoreceptors are
represented by two empty half spheres joined by an empty fiecube’s height on Figuiis approximatively300.m

and the depth and the width of this cub&(d pixels.

Figure 2. Perspective view of the 3D object used for the simulations

In order to create our simulated images with a five slice dbyee average the data from Figuténto five 60um-thick
slices. Additionally, in the simulations presented here,amly use d28 x 128 region of the301 x 301 volume. The five
slices obtained are presented on FigBire

The PSF’s used to compute the imagare generated with time-invariant aberrations expandeti@Zernike basis;
we use0.2 rd of astigmatism ), —0.1 rd of astigmatism Xs) and—0.5 rd of spherical aberratiorn4;;). These PSF's
are oversampled (with respect to the Nyquist frequency) faceor of1.5. With the object and the PSF, we simulate the
image by means of Eg2). The noise added is white Gaussian and stationary; itslatdrdeviation i$% of the maximum
intensity in the objecb. The five image layers are presented on Figuré&rom these images, it is clear that all object
slices contribute to all images (in particular the vessdlfe deconvolution aims at disentangling the contributibeach
object slice and at improving the resolution within eachpla



Figure 3. The five object layersd).

Figure 4. The five image layersj.

4.2. Restoration
In this section, we present three results obtained with eapdvolution method:

L2 regularization without a positivity constraint: we can sed~igureb the five estimated object slices. The restoration
error is10.31 ph/pix (the object id5.34 ph/pix on average). We can see low frequency oscillatiodssanesidual blur: the
missing cone of 3D frequencies makes it difficult for the sestion procedure to correctly disentangle the contrdsutf
all planes. Edges are not preservéd (egularization and no positivity constraint prevents saextrapolation).

Figure 5. The five estimated object layers witt2 regularization, without a positivity constraint.

L2 regularization with a positivity constraint: on FiguBeve can see that the positivity constraint helps the algarith
disentangle the differents planes and visibly reducesaieflequency oscillations. More quantitatively, the reatmn
error is8.34 ph/pix. Yet, edges are not well preserved.



Figure 6. The five estimated object layers witl2 regularization and a positivity constraint.

L2-L1 regularization with a positivity constraint: on the Figureve can see that the edges are much better preserved
and the separation between the differents planes is atfutlglbetter on the second restored image plane. The réistora
error is6.33 ph/pix.

Figure 7. The five estimated object layers witt2—L1 regularization and a positivity constraint.

To study the influence of the positivity constraint we conepilitree new piles of images)(with differents levels of
background and we perform a deconvolution with-1.1 regularization. In these simulations, we introduce a cwaus
background ino and we evaluate the positivity constraint effects on thereded objec. These images are 12828
pixels and the level of the noise is the same as previousliiéngtthe PSF used is not oversampled. In Figuse present
the results on the last slice where we see the photoreceptersan see that the positivity constraint helps reduceeranisl
ringing in the dark regions of the images., where it is actually enforced. If the objegttontain a continuous background
(e.g., the diffusion), the positivity constraint is lesB@ént as shown in the middle and bottom rows of Fig8iréhe higher
the background, the less efficient the positivity constraim short, the use of a positivity constraint, if the objecbn a
dark background, is very effective in filling the cone of nrigsfrequencies.

5. CONCLUSION AND PERSPECTIVES

A 3D deconvolution method has been derived in a Bayesiandrark for the restoration of adaptive-optics corrected
images of the human retina; it incorporates a positivitystiaint and a regularization metric in order to avoid uncafed
noise amplification. The regularization metric simultamgyp smoothes noise out and preserves edges, while staying
convex in order to keep the solution unique. We have dematestthe effectiveness of the method, and in particularef th
edge-preserving regularization, on realistic simulata d

Future work includes the processing of experimental datattis purpose, it is of paramount importance to use a PSF
that is a very close approximation of the true one in ordetmgroduce deconvolution artefacts. As this is quite difficu
another appealing perspective is to use blind (or myopicpdeolution.
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Figure 8. From left to right, a simulated recorded image, the estithatgect with a positivity constraint and the real objectorfrtop
to bottom, data without continuous bakground, witbfa intensity background and with#% intensity background.
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