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ABSTRACT

Raw individual Adaptive-Optics-corrected flood-illuminated
retinal images are usually quite noisy because of safety flux
limitations. These flood-illuminated images are also of poor
contrast. Interpretation of such images is therefore difficult
without an appropriate post-processing, which typically in-
cludes the registration of the recorded image stack into a mo-
saic image and the restoration of the latter.

We have developed an image registration method in a
MAP framework, based on previous work in astronomical
imaging, and tailored for the specifics of retinal imaging,
more precisely to the fact that the illumination of the retina
and the transmission of the instrument is non-homogeneous,
which makes conventional registration methods likely to fail.

The mosaic image must then be deconvolved in order to
visually restore the high-resolution brought by adaptive op-
tics. To this aim, we perform an unsupervised myopic decon-
volution that takes into account the 3D nature of the object
being imaged.

We successfully apply this whole processing chain to ex-
perimental in vivo images of retinal vessels.

1. INTRODUCTION

Adaptive Optics (AO) is a widespread technique impro-
ving the lateral resolution of retinal images – see [1] (this
conference) for a review of the current and envisioned appli-
cations of AO in clinical practice. Raw individual Adaptive-
Optics-corrected flood-illuminated retinal images are usually
quite noisy because of safety flux limitations. These flood-
illuminated images are also of poor contrast. Interpretation of
such images is therefore difficult without an appropriate post-
processing, which typically includes the registration of the re-
corded image stack into a mosaic image and the restoration of
the latter. This processing can be used both for direct interpre-
tation by a physician and for further automatic processing [1].

We have developed a novel image registration method in
a MAP framework, based on previous work in astronomi-
cal imaging [2], and tailored for the specifics of retinal ima-
ging [3], more precisely to the fact that the illumination of
the retina and the transmission of the instrument is quite non-
homogeneous, which makes conventional registration algo-
rithm likely to fail (see [4, 5] for reviews on existing registra-
tion methods).

The obtained mosaic image must then be deconvolved
in order to visually restore the high-resolution brought by
adaptive optics. Indeed, flood-illuminated images are of poor
contrast due to the three-dimensional nature of retinal ima-
ging, meaning that the image contains information coming
from both the in-focus plane and the out-of-focus planes of
the object. This deconvolution is difficult for two reasons.
Firstly because the point spread function (PSF) is not well
known, a problem known as myopic deconvolution. Secondly
because we are imaging a 3D object with a 2D imager.

We have developed an image model for dealing with the
latter fact, resulting in the recorded 2D image being a convo-
lution of an invariant 2D object with an unknown linear com-
bination of 2D PSFs. We address this problem by means of an
unsupervised myopic deconvolution.

In this communication we show results of the whole pro-
cessing chain (image registration followed by unsupervised
myopic deconvolution) on experimental retinal images.

2. RETINAL IMAGE REGISTRATION

2.1. Imaging model and registration method

We model each imagezj acquired by the retinal camera,
at every pixel(k, l), as a shifted portion of the reference image
i, multiplied by the illumination+transmission map (hereafter
global transmission)c and corrupted by noise :

zj(k, l) = c(k, l)× [i ⋆ δ(xj , yj)](k,l) + n(k, l), (1)



wherec is the uneven global transmission,i is the reference
image,⋆ is the convolution operator,(xj , yj) is the shift of
thej−th imagezj , δ(xj , yj) is a Dirac distribution centered
at (xj , yj), [.] is the sampling operator at pixel(k, l) andn is
the measurement noise.

In this imaging modality, noise is a mixture of readout
noise, which is homogeneous white Gaussian, and of photo-
nic noise, which follows Poisson statistics. This mixture can
reasonably be approximated as inhomogeneous white Gaus-
sian [7].The total noise variance is parameterized as the in-
verse of a weight mapwj(k, l), which allows us to be able
to cope with dead pixels simply by setting a null weight for
these pixels.

c can be estimated by averaging a large enough (> 20)
number of individual imageszj or as the linear combination
of base vectors (e.g.Zernike polynomials or other low-order
polynomials).

In order to avoid uncontrolled noise amplification in re-
gions of the reference image that have not been recorded, or
recorded with a very low SNR, we use the following prior : we
assume that the reference image followa priori a white Gaus-
sian statistics with a mean valuei0 and a variance1/wr(k, l).
In practice we often takewr(k, l) = µ〈wj(k, l)〉j , whereµ is
a hyperparameter allowing us to tune the regularization.

We want to jointly estimate the reference imagei(k, l)
and the shiftsxj , yj, with a prior on the reference image. We
do so in a Bayesian framework by a MaximumA Posteriori
estimation. The MAP criterion to be minimized reads :

L(i, {xj, yj}) =

N
∑

j=1

∑

k,l

wj(k, l).|zj(k, l)−

c(k, l)× [i ⋆ δ(xj , yj)](k,l)|
2 (2)

+
∑

k,l

wr(k, l).|i(k, l)− i0(k, l)|
2

By cancelling the derivative ofL(i, {xj, yj}) with respect
to the reference image, we obtain an analytical expression of
the reference imagêi that minimizes the criterion for a given
set of shifts{xj , yj} :

î(k, l; {xj, yj}) =

wr(k, l).i0(k, l) +
∑N

j=1(wj ijc)(k + xj , l + yj)

wr(k, l) +
∑N

j=1(wjc2)(k + xj , l + yj)
. (3)

If we substitute the analytical expression ofî(k, l; {xj, yj})
in Eq. (2), we obtain a new criterionL′({xj , yj}) that only de-
pends on the shifts{xj , yj}. Once the criterion is minimized
(using, for example, the VMLM-B method or a conjugate-
gradient method), the reference image is computed using Eq.
(3).

2.2. Results

40 images acquired with the Paris Quinze-Vingts Hospital
AO Fundus Camera (RTX-1 by Imagine Eyes, Orsay, France)
were registered using the MAP registration method. Figure
1 shows 1 of the 20 images acquired, Fig 2 shows the esti-
mated global transmission, and Figure 3 shows the estimated
reference image. The expansion of the field of view is clearly
visible as well as the improvement in contrast of the photore-
ceptors. Thanks to the regularization, there is no visible noise
amplification in the areas of the individual images where the
SNR was low (the dark areas in the mosaic).

Fig. 1. 1 of the 40 individual images.

Fig. 2. Estimated global transmission.



Fig. 3. Estimated mosaic using 20 individual images

3. MYOPIC DECONVOLUTION

3.1. Imaging model

The object and the imaging process are both three-
dimensional (3D). If we recorded a stacki3D of 2D images
focused at different depths in the object, a reasonable image
formation model, after background subtraction, could be
written as a 3D convolution :

i3D = h3D∗3Do3D + n, (4)

wherei3D is the 3D image,o3D is the 3D object,∗3D de-
notes the 3D convolution operator,h3D is the 3D PSF andn
is the noise. In practice, we only record one slice of such a
3D image. Therefore, in order to cope with the lack of infor-
mation, we assume that our object is shift invariant along the
optical axis :

o3D(x, y, z) = o2D(x, y)α(z), (5)

whereα(z) is the normalized flux emitted by the plane at
depthz (

∫

α(z)dz = 1).
In practice this invariance must only be verified over the

depth of focus of the instrument (50 microns for an AO flood
imager,10− 15 microns for a confocal imager).

With this assumption, the imaging model reads :

i(x, y) = (h2D ∗2D o2D)(x, y) + n(x, y) , (6)

with h2D aneffective2D PSF which depends on the longitu-
dinal brightness distribution of the objectα(z) and on the 3D
PSF :

h2D(x, y) =

∫

α(−z)h3D(x, y, z) dz.

The 2D imagei(x, y) at the focal plane of the instrument
is the 2D convolution of a 2D object and a global PSFh which

is the linear combination of the individual 2D PSFs (each one
conjugated with a different plane of the object) weighted by
the flux back-scattered from each plane.

After discretization and using Riemann sum to approxi-
mate the integral :

h2D(x, y) ≈
∑

j

αj hj(x, y) , (7)

with hj(x, y) , h3D(x, y, zj) the 2D lateral PSF at depthzj
andαj = α(zj)∆zj where∆zj is the effective thickness of
thejth layer. We defineα = {αj}j as the vector of unknowns
that parameterize the PSF.α is normalized (

∑

αj = 1) and
each parameter is positive (αj ≥ 0). We search forh2D as a
linear combination of a basis of PSF’s, each corresponding to
a given plane.
In the following, we consider short-exposure diffractive PSF’s
so that eachhj can be computed from the residual aberrations
measured with a WFS and the knowledge of the defocus of
planezj .

3.2. Unsupervised marginal estimation of the PSF

Joint estimation of the object and the PSF fails even for
a small number of unknowns because of a degeneracy of the
joint MAP criterion [8]. The estimator proposed is the mar-
ginal estimator, which has better properties [9], already pro-
posed in the literature in other contexts including estimation
of aberrations by use of phase diversity [10]. The principle
of marginal estimation is to integrate the objecto out of the
problem (i.e., marginalize the posterior likelihood [11]). We
integrate the joint probability of the objecto and the PSF pa-
rametersα over all the possible values of objecto.

α̂ = argmax
α

∫

p(i,o,α; θ)do. (8)

Marginalization drastically reduces the number of unk-
nowns to be retrieved, from the total number of pixels of the
image + the PSF parameters in the joint estimation case to
just a few PSF parameters. It gives us a true maximum likeli-
hood or maximum a posteriori (depending on the prior on the
estimated parameters) estimator of the parameters of inter-
est, namely, the PSF parameters. After estimation of the PSF
parametersα, the object is restored, for instance, by Wiener
filtering of the image with the estimated global PSF and hy-
perparameters.

α̂ML = argmax
α

p(i,α; θ) = argmax
α

p(i|α; θ)p(α; θ).

(9)
AO retinal images are dominated by a strong and quite

homogeneous background. In the following, we will there-
fore assume that the noise is homogeneous white Gaussian
with a varianceσ2. For the object, we choose a homogeneous
Gaussian prior probability distribution with a mean valueom

and a covariance matrixRo.



With a circulant approximation, the marginal criterion can
be written in the Fourier domain as follows :

JML(α) =
1

2

∑

ν

lnSo(ν) +
1

2

∑

ν

ln

(

|h̃(ν)|2 +
Sn

So(ν)

)

+
1

2

∑

ν

1

So(ν)

|̃i(ν)− h̃(ν)õm(ν)|2

|h̃(ν)|2 + Sn

So(ν)

+B′,

(10)

whereSn is the constant noise power spectral density (PSD),
So is the object PSD,ν is the spatial frequency and̃x denotes
the two-dimensional Fast Fourier Transform ofx.

The marginal estimator allows us to estimate the set of hy-
perparametersθ (actually the object PSDSo and noise PSD
Sn) together with the PSF coefficients in an automatic man-
ner. This method is called unsupervised estimation.

In order to reduce the number of hyperparameters we
must estimate, we choose to model the object PSDSo with
the 3-parameter model of [12]. There is no analytical expres-
sion for the minimum value of the criterion so the minimiza-
tion has to be done numerically. In our case, the minimization
is performed with a Variable Metric with Limited Memory,
Bounded (VMLM-B) [13].

Figure 4 shows, on simulated data, the RMS error on es-
timation of the PSF coefficients for different values of noise
and a varying data size, both in the supervised and unsupervi-
sed cases. For a given data size, both in the supervised and in

Fig. 4. RMS error on the estimation of the PSF as
a function of noise level and image size

the unsupervised estimation, the marginal estimator RMS er-
ror tends towards zero (i.e., the estimated parametersα tends
towards the exact value) when noise decreases. Even more in-
terestingly, for a given noise value, error tends towards zero as
the size of data increases. For example, for a 128× 128 pixel
image and for noiseσ = 5% of the max value of the image,
the RMS error on the PSF coefficientα estimation is less than
3%. This simulation shows that the unsupervised marginal es-
timator exhibits, in practice, its appealing theoretical proper-
ties, which opens the way to its use on experimental images.

3.3. Experimental results

The mosaic image of figure 3 was deconvolved using the
marginal estimator. The estimated object is shown in figure 5.

The vessel features of are much more clearly visible on
the estimated object than on the registered mosaic. In par-
ticular the contrast of the blood vessel walls is significantly
improved, allowing for an easier measurement of their width.

Fig. 5. Estimated object after marginal estimation of the PSF.

4. CONCLUSION

We have developed a complete processing chain for AO-
corrected flood-illuminated retinal images, which first per-
forms a joint registration of all raw images into a mosaic with
improved contrast and SNR, and then deconvolves this mo-
saic in a myopic and unsupervised fashion. The image regis-
tration uses a physics-based imaging model that takes into ac-
count the illumination inhomogeneity and uses all the images
jointly, in order to make the registration more robust than
common pair-wise intensity-based registration methods. The
deconvolution method explicitly models the fact that the ob-
ject being imaged is three-dimensional. With an appropriate
simplifying assumption on the object structure, the deconvo-
lution boils down to a 2D deconvolution where both the object
and the PSF are unknown. This problem is addressed satisfac-
torily by a marginal estimation of the PSF followed by a clas-
sical deconvolution. The deconvolution method additionally
estimates the hyper-parameters in an unsupervised way, so as
to be usable by non-specialists. This registration and decon-
volution chain has been successfully applied to experimental
in vivo images of human photoreceptors (not shown here for
lack of space) and of human retinal vessels.
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