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Abstract: We present a novel method to control the phase and amplitude of a femtosecond
laser beam using a linearized version of the transport-of-intensity equation. Simulations show
a peak power improvement better than 30%.
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1. Introduction

In order to maximize the peak power at the focal volume of a high-intensity femtosecond laser beam, phase-
conjugation (i.e. correction of the phase aberrations of the beam) with adaptive optics (AO) is not enough. Correc-
tion of both the phase and amplitude (field conjugation) [1] is needed. Phase and amplitude control has been a field
of research for the last two decades in free-space communications [2] and high-contrast imaging in astronomy [3].
We present a novel method to perform field-conjugation on a femtosecond laser using two deformable mirrors (DM).
The method is based on a linearized approach of the transport-of-intensity equation and is performed in a single step,
contrary to the iterative Gerchberg-Saxton algorithm and its variations used in most of the litterature.

2. Amplitude control method

The problem is to control the amplitude of a laser beam at a plane P2 by controlling the phase of the beam at plane
P1, for example with a deformable mirror. To retrieve the phaseto be applied at P1, we use the transport-of-intensity
equation [4] and we approximate the intensity derivative overzwith a finite difference:
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whereλ is the beam wavelength,I1 (respectivelyI2) is the beam intensity at plane P1 (respectively P2) and∆z is the
distance between plane P1 and P2. Eq.1 is linear and can be written in matrix form:
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whereφ0 is the phase of the beam incident on DM1 andφ1 is the phase applied by DM1.
The solution phasêφ1 therefore reads:
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whereM†
I1

is the pseudoinverse of matrixMI1 andI t
2 is the desired (target) intensity at plane P2. In order to reduce the

number of degrees of freedom of the inverse problem to be solved, the phaseφ1 is described as a linear combination
of a limited number of phase vectors, e.g. the influence functions of the deformable mirror.MI1 can be considered as
an interaction matrix. In practice it is computed accordingto Eq.2 whereI2 is registered for each phase vector.

Phase aberrations are corrected with a second deformable mirror at, or conjugated with, plane P2.



3. Simulation results

Simulations were peformed to estimate the performance of the amplitude control method. The initial, uncorrected
intensity at plane P1is represented at Fig.1, left. The target intensity (Fig.1, middle-left) at plane P2 is constant over
the DM2 pupil (to maximize the peak intensity at the focal plane) with a slight apodization so that there is no sharp
intensity drop at the pupil edge. Simulation conditions were as follows : DM1 diameter: 5cm;λ =850nm; propagation
distance was set to half the Fresnel distanceFd of the DM actuator pitcha (Fd = a2/λ) so that the intensity modulation
at plane P2 induced by the phase applied at plane P1 is maximum [5]. In our case, this corresponds to a propagation
distance of 10m for 12 actuators across the DM diameter. The estimated intensitŷI2 at plane P2 is obtained by a Fresnel
propagation of the estimated field at plane P1(ψ̂1 = A1exp[i(φ0+ φ̂1)]).

Fig. 1 shows, on the left, the simulated uncorrected, apodized target and estimated intensities, in the middle, cuts
of the uncorrected, target and corrected intensities and, on the right, the estimated solution phaseφ̂1 to be applied
by DM1. The improvement is clearly visible with the estimated intensity much closer to the target intensity than the
uncorrected. The improvement in peak power at the focal plane, assuming a perfectly corrected phase, is 33%.

The estimated phase to be applied by DM1 had a PV amplitude of 2.83µm (optical), well inside the range of
available deformable mirrors.

Once the pseudoinverse matrixM†
I1

is obtained (this can be done offline), the only operation to be performed to
compute the phase to apply by DM1 is a matrix product that takes less than 0.02 seconds on a personal computer
(128x128 pixel images).

Fig. 1. Left: Uncorrected (at P1), target and corrected (at P2) intensities. Middle: cuts of the target
(dashed line), uncorrected (dotted line) and corrected (solid line) intensities. Right: estimated phase.

4. Conclusion

We have developed a novel method to control the amplitude of afemtosecond laser beam in order to improve the peak
power at the focal volume. The method is non-iterative and allows for a quick estimation of the phase to be applied to
a deformable mirror to correct for amplitude aberrations inthe laser beam. Computer simulations have shown that a
better than 30% increase in peak-power can be expected, which is equivalent to an energy increase of the same amount.
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