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Marginal estimation of aberrations
and image restoration

by use of phase diversity
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We propose a novel method called marginal estimator for estimating the aberrations and the object from
phase-diversity data. The conventional estimator found in the literature concerning the technique first pro-
posed by Gonsalves has its basis in a joint estimation of the aberrated phase and the observed object. By
means of simulations, we study the behavior of the conventional estimator, which is interpretable as a joint
maximum a posteriori approach, and we show in particular that it has undesirable asymptotic properties and
does not permit an optimal joint estimation of the object and the aberrated phase. We propose a novel mar-
ginal estimator of the sole phase by maximum a posteriori. It is obtained by integrating the observed object
out of the problem. This reduces drastically the number of unknowns, allows the unsupervised estimation of
the regularization parameters, and provides better asymptotic properties. We show that the marginal method
is also appropriate for the restoration of the object. This estimator is implemented and its properties are
validated by simulations. The performance of the joint method and the marginal one is compared on both
simulated and experimental data in the case of Earth observation. For the studied object, the comparison of
the quality of the phase restoration shows that the performance of the marginal approach is better under high-
noise-level conditions. © 2003 Optical Society of America

OCIS codes: 010.7530, 100.1830, 100.3020, 100.3190, 110.6770.
1. INTRODUCTION
The images recorded by a telescope are often degraded by
aberrations. These aberrations can be due to atmo-
spheric turbulence and to imperfections of the optical sys-
tem. Whatever their origins, they lead to phase varia-
tions in the pupil plane that severely reduce the optical
transfer function. The problem is to rid the images of
these distortions. Many wave-front-sensing techniques
have been proposed but few can be used with both a point
source and an extended scene. One that can is phase di-
versity. This technique, first proposed by Gonsalves,1

has been significantly developed the past ten years. It
has been used successfully by many authors to determine
aberrations2–4 and also to improve the quality of images,
as in solar imaging.5,6 This technique uses a low-cost,
optically simple wave-front sensor but requires numerical
processing to estimate the unknowns from the images.
The conventional processing scheme found in the litera-
ture is based on the joint estimation of the aberrations
and of the observed object. The reconstruction of these
parameters is an ill-posed inverse problem and thus must
1084-7529/2003/061035-11$15.00 ©
be regularized. Several methods have been proposed to
this end. Concerning the aberrations, implicit regular-
ization is achieved by expanding the phase on a finite, lin-
ear combination of basis functions. Additionally, in the
case of imaging through turbulence, a statistical prior on
the turbulent phase is available according to the Kolmog-
orov model.7 To regularize the object, various ap-
proaches have been proposed: Some authors use a low-
pass filter,3,5 some impose a sieve on the object,6 and more
recently a Tikhonov regularization on the object was
proposed.8 All the regularization methods concerning
the object require the tuning of regularization param-
eters. In a joint estimation, these parameters must be
adjusted by hand. Furthermore, in the joint restoration
framework, the ratio of the number of unknowns
(aberrations 1 object) to the number of data does not
tend towards zero when the size of the data set tends to
infinity. As a consequence, the joint method does not
have good asymptotic properties.

The aim of this paper is to solve these problems by pro-
posing a robust estimator derived in a Bayesian frame-
2003 Optical Society of America
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work that restores the sole aberrations. It is obtained by
integrating the observed object out of the problem. This
novel method is called marginal estimator and is based on
a maximum a posteriori approach. The estimator has
good asymptotic properties and allows the unsupervised
estimation of the noise variance and of the regularization
parameters of the object. The marginal estimator also
provides a simple way to estimate the object once the ab-
errations and the regularization parameters have been
estimated: The restoration is given by a Wiener filter, as
with the joint estimator. The two methods differ in their
tuning of the regularization parameters and in the choice
of aberration estimators.

The outline of the paper is as follows: We begin with
the mathematical formulation of the problem in Section 2.
In Section 3 we recall the usual joint estimation scheme
and we present the marginal estimator. In Section 4, we
present the comparison of the two estimators; we com-
pare, by means of simulations, their asymptotic proper-
ties, the influence of the hyperparameters on the quality
of the restoration, and finally, their performances on both
simulated and experimental data. Section 5 summarizes
the results.

2. PHASE-DIVERSITY PRINCIPLE AND
IMAGING MODEL
The principle of phase diversity is to collect a first image
in the focal plane and one (or more) additional image(s)
that differ(s) from the focused one by a known phase
variation. A simple implementation of this technique is
to take the second image in a defocused plane (with a
known defocus distance). Figure 1 shows a simplified
diagram of the phase-diversity setup.

In the isoplanatic patch of the telescope, the image is
the noisy sampled convolution of the point-spread func-
tion h in the observation plane with the object o:

i~r! 5 ~h * o !~r! 1 n~r!, (1)

where r is a two-dimensional vector in the image plane
and n is an additive noise. Under the near-field approxi-
mation, the point-spread function associated with the fo-
cused image is given by

h1~r! 5 uFT21$P~u! • exp@ jf~u!#%u2, (2)

where u is a two-dimensional vector in the pupil plane, f
is the unknown aberrated phase function, P is the binary
aperture function, and FT21 denotes the inverse Fourier
transform. In the defocused plane

Fig. 1. Phase diversity principle.
h2~r! 5 uFT21(P~u! • exp$ j@ f~u! 1 fd~u!#%)u2, (3)

where fd is the known diversity-phase function.
In this paper, the aberrated phase function is expanded

on a finite set of Zernike polynomials9:

f~u! 5 (
i54

k

aiZi~u!. (4)

Note that the coefficients a1 –a3 have not been intro-
duced: The piston coefficient a1 is a constant added to
the phase and has no influence on the point-spread func-
tion, and the tilt coefficients a2 and a3 introduce a shift in
the image that is of no importance for extended objects.
In the following, we will note a 5 (a4 ,..., ak) t, the
$k 2 3%-dimensional vector that contains the aberration
coefficients.

In practice, data are discrete arrays because of the spa-
tial sampling of the images, and Eq. (1) takes the form:

i 5 Ho 1 n, (5)

where H is the Toeplitz-block-Toeplitz matrix that corre-
sponds to the convolution by h, and i, o, h and n are the
discrete forms of the previous variables. The problem is
to estimate the unknown parameters (the object o and the
aberrations a) from the data (focused i1 and defocused i2
images) and the defocus distance. We begin by recalling
the conventional method based on the joint estimation of
the unknowns.

3. THEORY
A. Joint Estimator

1. Criterion
The classical method is based on joint estimation of the
object and the aberrations. The Bayesian interpretation
of such an approach consists in computing the joint maxi-
mum a posteriori (jmap) estimator:

~ ô, â! jmap 5 arg max
o,a

f~i1 , i2 , o, a; u!

5 arg max
o,a

f~i1uo, a; u!f~i2uo, a; u!

3 f~o; u!f~a; u!, (6)

where f(i1 , i2 , o, a; u) is the joint-probability-density
function of the data (i1 , i2), of the object o, and of the ab-
errations a. It may also depend on a set of hyperparam-
eters or regularization parameters u. The functions
f(i1uo, a; u) and f(i2uo, a; u) denote the likelihood of the
data i1 and i2 , f(o; u) and f(a; u) are the a priori
probability-density function of o and a. We assume that
the noise is stationary, white Gaussian with a variance
s 2 (the same for the two images). We choose a Gaussian
prior-probability distribution for the object with a mean
om and a covariance matrix Ro , and also a Gaussian
distribution for the aberrations, with a null mean and
a covariance matrix Ra . Under these assumptions,
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the set of the hyperparameters is u 5 (un , uo , ua), where
un 5 s 2, uo 5 (Ro , om) and un 5 Ra . Hence we have

f~i1 , i2 , o, a; u!

5
1

~2p!N2/2s N2 expF2
1

2s 2 ~i1 2 H1o!t~i1 2 H1o!G
3

1

~2p!N2/2s N2 expF2
1

2s 2 ~i2 2 H2o!t~i2 2 H2o!G
3

1

~2p!N
2/2 det~Ro!1/2

expF2
1

2
~o 2 om!tRo

21~o 2 om!G
3

1

~2p!~k23 !/2 det~Ra!1/2 expS 2
1

2
atRa

21aD , (7)

where det(x) denotes the determinant of x and N2 is the
number of pixels in the image. The criterion to minimize
is then

L jmap~o, a, u! 5 2ln f~i1 , i2 , o, a; u!

5 N2 ln s 2 1
1

2
ln det~Ro! 1

1

2
ln det~Ra!

1
1

2s 2 ~i1 2 H1o!t~i1 2 H1o!

1
1

2s 2 ~i2 2 H2o!t~i2 2 H2o! 1
1

2
~o

2 om!tRo
21~o 2 om! 1

1

2
atRa

21a 1 A,

(8)

where A is a constant. Canceling its derivative with re-
spect to the object gives1,10 a closed-form expression for
the object ô(a, u) that minimizes the criterion for given
(a, u):

ô~a, u! 5 ~H1
t H1 1 H2

t H2 1 s 2Ro
21!21~H1

t i1 1 H2
t i2

1 s 2Ro
21om!. (9)

L jmap8 ~a, u! 5 L jmap@ ô~a, u!, a, u#

5 N2 ln s 2 1
1
2 (

v
ln So~v ! 1

1
2 (

v

u ĩ1~v

s 2F uh̃1~

1
1
2 (

v

uh̃1~a, v !õm~v ! 2 ĩ1~v !u2 1 uh̃2~a

So~v !F uh̃1~a, v !u2 1 uh̃2~a,
Furthermore, the criterion L jmap(o, a, u), and thus the
closed-form expression ô(a, u), can be written in the dis-
crete Fourier domain with a circulant approximation (see
Appendix A),

L jmap~o, a, u!

5 N2 ln s 2 1
1

2 (
v

ln So~v ! 1
1

2
ln det~Ra!

1 (
v

1

2s 2 u ı̃1~v ! 2 h̃1~a, v !õ~v !u2

1 (
v

1

2s 2 u ı̃2~v ! 2 h̃2~a, v !õ~v !u2

1 (
v

uõ~v ! 2 õm~v !u2

2So~v !

1
1

2
atRo

21a 1 A, (10)

ỗ~a, u, v ! 5

h̃1* ~a, v ! ı̃1y 1 h̃2* ~a, v ! ı̃2y 1
s 2õm~v !

So~v !

uh̃1~a, v !u2 1 uh̃2~a, v !u2 1
s 2

So~v !

,

(11)

where x̃ denotes the two-dimensional Fourier transform
of x, y is the spatial frequency, and So is the power-
spectral density of the object. Substituting ô(a, u) into
the criterion yields a new criterion that does not depend
explicitly on the object:

2. A Priori Information
The a priori information on the aberrations a is the cova-
riance matrix Ra . In the case of aberrations induced by
turbulence, Ra is deduced from Kolmogorov statistics.9

If the aberrations are due to the imperfections of the sys-
tem (misalignment, thermal effects, etc.) that are essen-
tially low frequency, a few Zernike coefficients (typically
the first twenty) are usually enough to describe all the ab-
errations. Note that for high-frequency imperfections,
such as polishing errors on optics, this small number of
coefficients is not enough. In the case of low-frequency

~a, v ! 2 ĩ2~v !h̃1~a, v !u2

!u2 1 uh̃2~a, v !u2 1
s 2

So~v !
G

!õm~v ! 2 ĩ2~v !u2

1
s 2

So~v !
G 1

1
2 ln det~Ra! 1

1
2 atRa

21a 1 A. (12)
!h̃2

a, v

, v

v !u2
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imperfections, regularization resulting from the trun-
cated expansion of the phase is sufficient and the addi-
tional penalization term ln det(Ra) 1 1/2atRa

21a can be
omitted.

The a priori information required on the object consists
of the choice of the object-power-spectral-density model.
We choose the following one:

So~v ! , E@ uõ~v ! 2 õm~v !u2# 5 k/~vo
p 1 vp! 2 uõm~v !u2,

(13)

where E@•# stands for the mathematical expectation.
This heuristic model and similar ones have been used
quite widely.11 Note that this model introduces four hy-
perparameters uo 5 (k, vo , p, om). The tuning of the
hyperparameters of the object uo is not easy: They de-
pend on the structure of the object. Thus, they must be
estimated for each object. Unfortunately, with a joint
method, the hyperparameters cannot be jointly estimated
with o and a. Indeed, the criterion [Eq. (8)] degenerates
when, for example, one seeks uo together with o and a; in
particular, for the pair $ûo 5 (k 5 0, vo , p, om), ô
5 om%, which does not depend on the data, the criterion

tends to minus infinity. So before minimizing L jmap ,
these hyperparameters must be chosen empirically by the
user. Moreover, concerning asymptotic behavior (i.e.,
when the observed images incorporate a growing number
of pixels), such joint estimations do not have good
asymptotic properties, as empirically checked in Subsec-
tion 3.B. In a very general setting, Little and Rubin12

provide additional insight into the behavior of joint esti-
mators. This leads us to propose the marginal estima-
tion approach.

B. Marginal Estimation
In this method, the phase and the hyperparameters
linked to the noise and the object (un , uo) are first esti-
mated. Then, if the parameter of interest is the object, it

is restored in a second step by Wiener filtering with the
previous aberrations and hyperparameters estimates.
Thus the object is restored in the same way it is with the
joint method, except that, in the marginal method, the ab-
errations used are estimated by the minimization of a dif-
ferent criterion, and except that the tuning of the hyper-
parameters can be done automatically, as described
below.

1. Criterion
The marginal estimator restores the sole aberrations by
integrating the object out of the problem [in the vocabu-

Lmap~a, u! 5
1
2 ln det~RI! 1

1
2 (

v

u ĩ1~v !h̃2~a, v ! 2

s 2F uh̃1~a, v !u2 1 uh̃

1
1
2 (

v

uh̃1~a, v !õm~v ! 2 ĩ1~v !u2 1 uh̃

So~v !F uh̃1~a, v !u2 1 uh̃2~a
lary of probabilities, to integrate out (i.e., to marginalize)
a quantity means to compute a marginal probability law
by summing over all possible values of the quantity]. It
is a maximum a posteriori estimator for a, obtained by in-
tegrating the joint-probability-density function:

âmap 5 arg max
a

f~i1 , i2 , a; u!

5 arg max
a

E f~i1 , i2 , o, a; u!do

5 arg max
a

E f~i1ua, o; u!f~i2ua, o; u!

3 f~a; u!f~o; u!do. (14)

Let I 5 (i1 i2)T denote the vector which concatenates the
data. As a linear combination of jointly Gaussian vari-
ables (o and n), I is a Gaussian vector. Maximizing
f(i1 , i2 , a; u) 5 f(I, a; u) is thus equivalent to minimiz-
ing the following criterion:

Lmap~a, u! 5
1
2 ln det~RI! 1

1
2 ~I 2 mI!

TRI
21~I 2 mI!

1
1
2 ln det~Ra! 1

1
2 atRa

21a 1 B, (15)

where B is a constant, mI 5 (H1om H2om)T, RI is the co-
variance matrix of I, and by definition RI,E@I It#
2 E@I#E@I# t. The latter has the following expression:

RI 5 FH1RoH1
t 1 s 2Id H1RoH2

t

H2RoH1
t H2RoH2

t 1 s 2Id
G , (16)

where Id is the identity matrix.

2. Relationship between the Joint and the Marginal
Criteria
The calculation of (I 2 mI)

TRI
21(I 2 mI) (see Appendix

B) leads to the following expression for Lmap :

The comparison of the expression of the criterion Lmap
[see Eq. (17)] and of the criterion L jmap8 [see Eq. (12)]
shows that the two criteria are connected by the following
relationship,

Lmap~a, u! 5
1
2 ln det~RI! 2 N2 ln s 2 2

1
2 (

v
ln So~v !

1 L jmap8 ~a, u! 1 C, (18)

where C is a constant. If we focus only on the terms de-
pending on the phase (i.e., assume that the hyperparam-
eters are known), relationship (18) can be summarized13:

~v !h̃1~a, v !u2

, v !u2 1
s 2

So~v !
G

v !õm~v ! 2 ĩ2~v !u2

!u2 1
s 2

So~v !
G 1

1
2 ln det~Ra! 1

1
2 atRa

21a 1 B. (17)
ĩ2

2~a

2~a,

, v
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Lmap~a! 5
1
2 ln det~RI! 1 L jmap8 ~a!. (19)

Thus, the difference between the marginal and the joint
estimator consists of a single additional term dependent
on the phase, which in the discrete Fourier domain is
given by (see Appendix C):

ln det~RI!

5 (
v

ln So~v ! 1 N2 ln s 2

1 (
v

lnF uh̃1~a, v !u2 1 uh̃2~a, v !u2 1
s 2

So~v !
G . (20)

Although the two estimators differ by only one term, we
shall see in Subsection 4.B that their properties differ
considerably. Before that, let us see how the hyperpa-
rameters can be estimated.

3. Estimation of the Hyperparameters
Both estimators call for the choice of the values of the hy-
perparameters u. For the marginal estimator, the esti-
mation of uo 5 (k, vo , p, om) and un 5 s 2 can be tackled
jointly with the aberrations according to

~ â, ûo , ûn! 5 arg max
a,uo ,un

f~i1 , i2 , a; u!. (21)

The criterion Lmap(a) [Eq. (15)] becomes
Lmap(a, s 2, k, vo , p, om , ua). It must be minimized
with respect to the aberrations a and the five hyperpa-
rameters s 2, k, vo , p, and om . If we adopt the change of
variable m 5 s 2/k, the cancellation of the derivative of
the criterion with respect to k gives a closed-form expres-
sion k̂(a, m, vo , p, om , ua) that minimizes the criterion
for given values of the other parameters. Injecting k̂ into
Lmap yields Lmap(a, m, vo , p, om , ua). There is no
closed-form expression for m̂, v̂o , p̂, and ôm , but it is easy
to calculate the analytical expression of the gradients of
the criterion with respect to these hyperparameters, and
then use gradient-based methods for the minimization of
the criterion.

4. Restoration of the Object
When phase diversity serves as a wave-front sensor, esti-
mation of the aberrations is the unique goal. In contrast,
in the case of image restoration, the object is the param-
eter of interest. In the case of the joint method, the
object is estimated jointly with the aberrations, but
in the case of the marginal estimator, only the aberrations
and the hyperparameters are directly provided by
the minimization of the criterion. However, the marginal
method provides a simple way to restore the object.
The idea is to calculate ô once the aberrations and
the hyperparameters are estimated, as ômap

5 arg maxo f(i1 , i2 , âmap ; ûmap). The object ômap is the
bi-frame Wiener filter associated with the aberration and
hyperparameter estimates âmap and ûmap . Additionally,
although formally the restoration of the object is done in a
second step, in practice its restoration is performed at
each computation of the marginal criterion [see Eqs. (18)
and (11)] as in the joint method, so it is available at con-
vergence.

4. COMPARISON
In this section we compare the two estimators by means
of simulations and experimental data.

A. Image Simulation
The simulations have been obtained in the following way:
Our object is an Earth view. The aberrations are due to
the imperfections of the optical system. The phase is a
linear combination of the first 21 Zernike polynomials
with coefficients listed in Table 1; the estimated phase
will be expanded on the same polynomials. The defo-
cused amplitude for the second observation plane is 2p
radians, peak-to-valley. The simulated images are mono-
chromatic and are sampled at the Shannon rate. They
have been obtained by convolution between the point-
spread function and the object, computed in the Fourier
domain by use of fast Fourier transform. The result is
corrupted by a stationary, white Gaussian noise (see Fig.
2). The images generated in this way are periodic. This
is an artificial situation under which Ro is truly circulant-
block-circulant, simpler, than the real cases.

B. Asymptotic Properties of the Two Estimators for
Known Hyperparameters
We first begin with a comparison of the asymptotic prop-
erties of the two estimators on the ground of simulations.
For the time being, we consider that the hyperparameters
are the ‘‘true’’ ones, i.e., we fit the power-spectral density
of the object using the true object, and we assume that s 2

is known (note that the mean object is set to zero). On
the other hand, as in all the following, no regularization
on the aberrations is introduced, save that only the

Table 1. Values of the Coefficients Used for
Simulations

Coefficient Value (radians)

a4 20.2
a5 0.3
a6 20.45
a7 0.4
a8 0.3
a9 20.25
a10 0.35
a11 0.2
a12 0.1
a13 0.05
a14 20.05
a15 0.05
a16 0.02
a17 0.01
a18 20.01
a19 20.02
a20 0.01
a21 0.01
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Zernike coefficients a4 to a21 are estimated. Conse-
quently, the marginal estimation, whose basis was a
maximum a posteriori approach, now corresponds to
maximum-likelihood estimation, and the joint approach
corresponds to generalized-maximum-likelihood estima-
tion. The minimized criteria will then be denoted Lml
and Lgml , respectively. Figure 3 shows the rms error
(RMSE) on the phase as a function of the noise level for
three image sizes (128 3 128, 64 3 64 and 32
3 32 pixels). Results are shown for the joint method
[Fig. 2(a)] and for the marginal one [Fig. 2(b)]. The
RMSE on the phase is defined as @( i54

21 ^(â i 2 ai
true)2&#1/2;

the empirical average is done on 50 different noise real-
izations. Furthermore, for the image sizes of 32 3 32
and 64 3 64 pixels, the RMSE is averaged on all the sub-
images of 32 3 32 pixels (respectively, 64 3 64) con-
tained in the image of 128 3 128 pixels. For joint esti-
mation, the RMSE does not vary significantly when the
number of data increase. This pathological behavior is
borne out by several statistical studies12,14: Bias and
variance are not expected to vanish asymptotically; i.e.,
the estimate does not converge toward the true value as
the size of the data set tends to infinity. An intuitive ex-
planation of this phenomenon is that if a larger image is
used to estimate the aberrations, the size of the object,
which is jointly reconstructed, increases also, so that the
ratio of the number of unknowns to the number of data
does not tend toward zero. In contrast, for marginal es-
timation the ratio of unknowns to data tends toward zero
because the number of unknowns stays the same what-
ever the size of the data set. In this case, the RMSE of
the phase decreases when the number of data increase
[see Fig. 3(b)]. Indeed, under broad conditions, the mar-
ginal estimator is expected to converge, since it is a true
maximum-likelihood estimator.15,16

Fig. 2. (a) Aberrated phase (l/7 rms), (b) true object, (c) focused
image, (d) defocused image.
Furthermore, we have empirically checked that the
joint criterion presents local minima whatever the size of
the data set, whereas the marginal criterion tends to be
asymptotically more and more regular. The latter obser-
vation is in agreement with the asymptotic Gaussianity of
the likelihood, which is expected under suitable statistical
conditions.

C. Influence of the Hyperparameters
An important problem for the estimation of the object and
the aberrations is the tuning of the hyperparameters.
For the joint estimator, we have pointed out that they
must be adjusted by hand. Particularly important is the
global hyperparameter m (see Subsection 3.B.3), i.e., the
one that quantifies the trade-off between goodness of fit to
the data and to the prior. First, let us study its influence
on the joint method. Figure 4 shows the RMSE on the
phase estimates and on the object estimate as a function
of the value of this hyperparameter (its true value is
m 5 1). The RMSE on the object is defined as
@(r^( ô(r) 2 o true(r))2&#1/2/@(rô(r)2#1/2. We see that the

Fig. 3. RMSE of phase estimates as a function of noise level
given in percent (it is the ratio between the noise standard de-
viation and the mean flux per pixel): (a) joint estimator, (b) mar-
ginal estimator. The solid, dashed and dotted curves, corre-
spond respectively, to images of dimensions 128 3 128, 64 3 64
and 32 3 32 pixels. Such RMSE estimates have been obtained
as empirical averages on 50 independent realizations of noise.
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best value of this hyperparameter (i.e., the one that gives
the lower error on the estimate) is not the same for the
object and for the phase. This means that the object and
the phase can not be jointly restored optimally. Note
that the optimal hyperparameter value for the object co-
incides with the true value m 5 1. If the parameter of in-
terest is the phase, the object must be underregularized
to have a better estimation of the aberrations. The be-
havior of RMSE on the phase strongly depends on the
noise level. For a high noise level (14% here), there is an
optimal basin, but for lower noise levels (4% and below),
any value under 1 [including a near-null regularization,
which means that the parameter m is not equal to zero but
to a small arbitrary constant (10216 in our case) to avoid
numerical problems due to computer precision] is almost
optimal with respect to estimation of the aberrations even
though the jointly estimated object becomes of the poorest
quality. This observation sheds some light on the finding
that, when the parameters of interest are the aberrations
and when the noise level is low, estimation without object
regularization can be used successfully, as the literature
attests.7,17–19

This empirical observation has also led us to study the
asymptotic behavior of the joint estimator with near-null

Fig. 4. Plots of RMSE for joint phase estimates (dashed curve–
right vertical axis) and joint object estimate (solid curve–left ver-
tical axis) as a function of the value of the hyperparameter m for
an image size of 32 3 32 pixels. Noise level of (a) 14%, (b) 4%.
regularization. Figure 5 shows the results. In this case,
when the number of data increase, the RMSE on the ab-
errations estimates decreases. Although the ratio of the
number of data samples to the number of unknowns is the
same as that of the estimation with the true hyperparam-
eters, the estimator behaves as if the object were not be-
ing estimated. From a statistical viewpoint, the surpris-
ing behavior of joint aberrations estimates when the
regularization parameter m vanishes remains to be under-
stood.

Finally, we have analyzed the influence of the global
hyperparameter on the RMSE of marginal estimates (Fig.
6), and we can see that there is a unique optimal hyper-
parameter both for the object and the aberrations (we
have drawn the curves only for a noise level of 4% because
the general behavior of this estimator is the same for all
noise levels).

D. Unsupervised Estimation
We have shown that the marginal estimator has a better
coherence than the joint one: The optimal hyperparam-

Fig. 5. RMSE of joint phase estimates as a function of noise
level for a near-null regularization for the three image sizes
noted on graph.

Fig. 6. Plots of RMSE for marginal phase estimates (dashed
curve–right vertical axis) and marginal object estimate (solid
curve–left vertical axis) as a function of the value of the hyper-
parameter m for an image size of 32 3 32 pixels and a noise level
of 4%.
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eters are the same for the aberrations and for the object.
We still have to show that the unsupervised estimation of
the hyperparameters (i.e., when the hyperparameters are
estimated jointly with the aberrations) gives good aberra-
tions estimates. To this end, we compare the quality of
the aberrations reconstruction obtained either by mini-
mizing Lml(a) with the true hyperparameters (which
are the best hyperparameters for the restoration of the
aberrations; see Fig. 6) or by minimizing Lml(a, m, vo , p)
for several image sizes. From Fig. 7 we see that for
low noise levels, the unsupervised restoration is very
good: The maximum difference is less than 5%. For
128 3 128 pixels, it is quite good (the maximum
difference is less than 15%) for any noise level. Only for
32 3 32 pixels and high noise levels is the reconstruction
seriously degraded, because of the lack of information in
the noisy data.

E. Performance Comparison

1. Simulated Data
First we present the performance comparison of the joint
and the marginal estimators on simulated data. To com-
pare these estimators in a realistic way, we use the joint
estimator with a near-null regularization (which gives
good results for the estimation of the aberrations, as seen
in Subsection 4.C) and the unsupervised marginal esti-
mator described in Subsection 4.D. First let us see their
performance on the restoration of the phase. We com-
pared the RMSE of the phase estimates as a function
of noise level for two image sizes (32 3 32 pixels and
128 3 128 pixels). The results for the two estimators
are plotted in Fig. 8. We can see two different domains:
When the SNR is high (noise ,5%), the two estimators
give approximately the same results. At lower SNR
(5% , noise , 20%), marginal estimation is signifi-
cantly better. Concerning the restoration of the object,
Fig. 9 shows the results obtained by the two methods
(left panel is for the joint estimator, right for the mar-
ginal) for a noise level of 4% and an image size of
128 3 128 pixels. As we see, when there is no regular-
ization on the object, at the minimum of the joint crite-
rion, the object estimate is completely buried in noise. A

Fig. 7. Performance of marginal estimation with the true hyper-
paramaters (pluses) and for unsupervised estimation (diamonds)
as measured by RMSE of phase estimates versus noise level.
solution to avoid this very bad restoration is arbitrarily to
stop the iterative minimization before the end (which is
an ad hoc regularization7,20). We show this object esti-
mate to illustrate the surprising behavior of the joint es-
timator, which is able to restore the aberrations well even
if the jointly estimated object is very degraded.

2. Experimental Data
Finally, we compare, on experimental data, both phase-
diversity estimators applied to wave-front sensing on an
extended scene. We use a plate to generate known aber-
rations on the optical system. These aberrations (mainly
defocus and astigmatism) depend on the angle between
the plate and the optical axis.21 The optical setup is de-
picted in Fig. 10. Note that this optical setup has been
used in a previous paper.17 A slide illuminated by a pro-
jector and located in the focal plane of the lens L1 simu-
lates the extended scene. The slide represents the object
used in the simulations. The translation of the lens L2
allows the successive recording of the focal and the
out-of-focus images (with a defocus amplitude peak-
to-valley of l). The data are monochromatic images
(l 5 633 nm, 10-nm width) and are Shannon sampled.
To process experimental data, we have to take into ac-
count the problem of edge effects because the criterion is
expressed in the Fourier domain (the convolutions are
made by using fast Fourier transform and produce severe
wrap-around effects on extended scenes). To solve this

Fig. 8. RMSE of unsupervised marginal estimator (diamonds)
and joint estimator with near-null regularization aberrations es-
timates (pluses) as a function of noise level.

Fig. 9. Object restored by the joint method (left panel; near-null
regularization used) and by the unsupervised marginal method
(right panel). The noise level is equal to 4%.
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Fig. 10. Optical setup.
problem, two solutions have been proposed in the phase-
diversity literature: the apodization technique5 and the
guard-band technique.6 In the following, we have chosen
the second method. The application of the guard-band
technique to our restoration methods is explained in Ap-
pendix D. The image size used for the estimation is
64 3 64 pixels (one focused experimental image is shown
in Fig. 10) and the guard-band width used at each edge is
equal to 32 pixels. The measurements of five pairs of fo-
cused and defocused images are made for an angular po-
sition of the plate of 45° and different noise levels. The
theoretical values of the aberrations generated are
a4 5 0.383 rad (defocus) and a6 5 0.442 rad (astigma-
tism).

Figure 11 compares the RMSE on the phase estimates
obtained by the unsupervised marginal estimator and by
the joint estimator with a null regularization on the ob-
ject, as a function of noise level. The curves are the re-
sult of the average of the 25 estimates obtained by all the
combinations of the five pairs of focused and defocused
images. For a noise level of 2%, the two estimators give
very close phase estimates. For lower signal-to-noise ra-
tios, the marginal method performs significantly better.
This behavior is comparable with the one obtained in
simulations (see Fig. 8) and thus validates on experimen-
tal data the superiority of the marginal estimator for high
noise levels.

5. CONCLUSION
We have shown that the conventional method used in
phase diversity has undesirable asymptotic properties

Fig. 11. RMSE of unsupervised marginal estimator (diamonds)
and the joint estimator with null regularization (pluses) aberra-
tions estimates as a function of noise level.
(the estimates do not converge toward the true values as
the data size tends to infinity, and they usually present
local minima), requires manual tuning of the regulariza-
tion parameters, and does not allow a jointly optimal es-
timation of the object and of the aberrations. We
proposed a novel marginal estimator to solve these prob-
lems and showed its good asymptotic properties. We pro-
posed and validated an unsupervised estimation that
solves the problem of hyperparameter tuning. In addi-
tion, we showed that the aberrations and the hyperpa-
rameters estimated by the marginal method could easily
be used to restore the object. Finally, we compared the
performance of the joint method and the marginal one on
simulated and on experimental data. This study has
shown that, for the studied object, the two estimators give
a very similar performance on the phase estimate for low
noise levels but that the marginal method leads to better
phase estimates for high noise levels. In this paper we
used one particular Earth view. Future work should in-
clude a more comprehensive comparison of the two meth-
ods.

APPENDIX A: CIRCULANT
APPROXIMATION
We assume that (o 2 om) is stationary, so that the cova-
riance matrix Ro is Toeplitz-block-Toeplitz. These matri-
ces can be approximated by circulant-block-circulant ma-
trices with the approximation corresponding to a
periodization. Under this assumption, the covariance
matrix Ro and the convolution matrices H1 and H2 are di-
agonalized by a discrete Fourier transform. We can
write

Ro 5 F21 diag@So#F

H1 5 F21 diag@ h̃1#F

H2 5 F21 diag@ h̃2#F

where F is the two-dimensional discrete Fourier-
transform matrix, diag@x# denotes a diagonal matrix hav-
ing x on its diagonal, tilde denotes the two-dimensional
discrete Fourier transform, and So is the power-spectral
density of the object. Thus the criterion L jmap can be
written in the Fourier domain.

APPENDIX B: CALCULATION OF
(IÀmI)

TRI
21(IÀmI)

The expression of RI
21 is obtained by the block-matrix in-

version lemma22
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RI
21 5 FQ11 Q12

Q21 Q22
G (B1)

with

Q11 5 @~H1RoH1
t 1 s 2Id! 2 H1RoH2

t ~H2RoH2
t

1 s 2Id!21H2RoH1
t #21,

Q12 5 2Q11~H1RoH2
t !~H2RoH2

t 1 s 2Id!21,

Q21 5 2~H2RoH2
t 1 s 2Id!21~H2RoH1

t !Q11 ,

Q22 5 @~H2RoH2
t 1 s 2Id! 2 H2RoH1

t ~H1RoH1
t

1 s 2Id!21H1RoH2
t #21. (B2)

Substituting the expression of mI (see Subsection 3.B.1)
and of RI

21 [Eq. (B1)] into (I 2 mI)
TRI

21(I 2 mI) yields:

~I 2 mI!
TRI

21~I 2 mI!

5 ~i1 2 H1om!tQ11~i1 2 H1om!

1 ~i1 2 H1om!tQ12~i2 2 H2om!

1 ~i2 2 H2om!tQ21~i1 2 H1om!

1 ~i2 2 H2om!tQ22~i2 2 H2om!.

Using the circulant approximation (see Appendix A)
for H1 , H2 and Ro , the previous equation is limited to
the sum of diagonal terms. After simplification, (I
2 mI)

TRI
21(I 2 mI) has the following expression:

APPENDIX C: DETERMINANT OF RI

Let D be a matrix that reads

D 5 FA B

C DG
in a block form. Its determinant is given by

det~D! 5 det~A !det~D 2 CA21B !.

Using this formula, it is easy to calculate the determinant
of RI :

~I 2 mI!
TRI

21~I 2 mI! 5 (
v

u ı̃1~v !h̃2~a, v ! 2 ı̃2~v !h̃1~

s 2F uh̃1~a, v !u2 1 uh̃2~a, v !u2

1 (
v

uh̃1~a, v !õm~v ! 2 ı̃1~v !u2

So~v !F uh̃1~a, v !u2 1
det~RI! 5 det~H1RoH1
t 1 s 2Id!det@H2RoH2

t 1 s 2Id

2 H2RoH1
t ~H1RoH1

t 1 s 2Id!21H1RoH2
t #.

(C1)

Expression (C1) can be rewritten in the Fourier domain
(see Appendix A) as

det~RI! 5 )
v

s 2Id 3 )
v

So~v ! 3 )
v

F uh̃1~a, v !u2

1 uh̃2~a, v !u2 1
s 2

So~v !
G . (C2)

APPENDIX D: APPLICATION OF
GUARD-BAND TECHNIQUE
To apply the guard-band technique to the joint estimator,
in the case of the Gaussian noise model, we use the crite-
rion L jmap(o, a, u) [Eq. (10)]. For the marginal criterion
Lmap(a, u), a new algorithm Lmap

alt (o, a, u) called the al-
ternating marginal criterion is used. The relationship
between the joint criterion and the marginal one [see Eq.
(18)] can be summarized by Lmap(a, u) 5 L jmap8 (a, u)
1 e(a, u). The alternating marginal criterion is
then defined by Lmap

alt (o, a, u) 5 L jmap(o, a, u)
1 e(a, u), and

arg min
o,a,u

Lmap
alt ~o, a, u! 5 arg min

a,u Harg min
o

Lmap
alt ~o, a, u!J

5 arg min
a,u Harg min

o
@Ljmap~o, a, u!#

1 «~a, u!J
5 arg min

a,u
@Ljmap8 ~a, u! 1 «~a, u!#

5 arg min
a,u

Lmap~a, u!. (D1)

The minimization of Lmap
alt (o, a, u) with respect to o, a,

and u is therefore equivalent to the minimization of
Lmap(a, u) with respect to the sole a and u. The guard-
band can then be applied to the criterion Lmap

alt (o, a, u).

!u2

s 2

o~v !
G

h̃2~a, v !õm~v ! 2 ı̃2~v !u2

~a, v !u2 1
s 2

So~v !
G . (B3)
a, v

1
S

1 u

uh̃2
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