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Advanced Imaging Methods for Long-Baseline
Optical Interferometry

Guy Le Besnerais, Sylvestre Lacour, Laurent M. Mugnier, Eric Thiébaut, Guy Perrin, and Serge Meimon

Abstract—We address the data processing methods needed for
imaging with a long baseline optical interferometer. We first de-
scribe parametric reconstruction approaches and adopt a general
formulation of nonparametric image reconstruction as the solution
of a constrained optimization problem. Within this framework,
we present two recent reconstruction methods, MIRA and WISARD,
representative of the two generic approaches for dealing with the
missing phase information. MIRA is based on an implicit approach
and a direct optimization of a Bayesian criterion while WISARD
adopts a self-calibration approach and an alternate minimization
scheme inspired from radio-astronomy. Both methods can handle
various regularization criteria. We review commonly used regular-
ization terms and introduce an original quadratic regularization
called “soft support constraint” that favors the object compact-
ness. It yields images of quality comparable to nonquadratic regu-
larizations on the synthetic data we have processed. We then per-
form image reconstructions, both parametric and nonparametric,
on astronomical data from the IOTA interferometer, and discuss
the respective roles of parametric and nonparametric approaches
for optical interferometric imaging.

Index Terms—Fourier synthesis, image reconstruction, optical
interferometry, phase closure.

1. INTRODUCTION

HE ultimate resolution of an individual telescope is lim-
T ited by its diameter. Because of size and mass constraints,
today’s technology limits diameters to 10 m or so for ground
based telescopes and to a few meters for space telescopes. Op-
tical interferometry (OI) allows one to surpass the resulting res-
olution limitation, currently by a few factors of ten, and in the
next decade by a factor 100.

Interferometers have allowed breakthroughs in stellar physics
with the first measurements of diameter and more generally of
fundamental stellar parameters, see recent reviews [1], [2]. Star
pulsations have been detected allowing to understand both the
physics of stars and the way they release matter in the interstellar
medium. Also, the measurement of the pulsation of Cepheid
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stars has allowed astronomers to establish an accurate distance
scale in the universe. Many subjects have been addressed, a
spectacular one being the shape of fast rotating stars, which are
now clearly known to be oblate by sometimes a huge amount
[3], [4]. With the advent of large telescopes and adaptive optics,
more distant sources, beyond our own galaxy are now acces-
sible. An important result has been the direct study of the dusty
torus around super-massive black holes in the center of these
galaxies, which is the corner stone of the unified theory to ex-
plain the active galactic nuclei phenomenon [5]-[7]. With the
success of large interferometers, and especially of the European
VLTI, interferometry is now used as a regular astrophysical tool
by nonexpert astronomers and many more results are to be ex-
pected with the steadily increasing amount of published mate-
rial.

OI consists in taking the electromagnetic fields received at
each of the apertures of an array (elementary telescopes or
mirror segments) and making them interfere. For each pair of
apertures, the data contain high-resolution information at an
angular spatial frequency proportional to the vector separating
the apertures projected onto the plane of the sky, or baseline.
With baselines of several hundred meters, this spatial frequency
can be much larger than the cut-off frequency of the individual
apertures.

Long baseline interferometers, for which the base-
line-to-aperture ratio is quite large, usually provide a discrete
set of spatial frequencies of the object brightness distribution,
from which an image can be reconstructed by means of Fourier
synthesis techniques. For the time being, interferometers able
to provide direct images are not common: the Large Binocular
Telescope (LBT) , cf. 1bto.org/, will be the first of this kind
with a baseline of the same order as the diameter of the two
individual apertures. Recent, comprehensive reviews of OI and
its history can be found for instance in [2], [8].

This paper addresses optical interferometry imaging (OII),
i.e., the data processing methods needed for imaging sources
with today’s long baseline optical interferometers. Many re-
construction methods for OII are inspired from techniques
developed for radio interferometry, as can be seen in the
methods which were compared in the recent Interferometry
Imaging Beauty Contests: IBC’04 [9] and IBC’06 [10]. Another
body of work is the set of parametric reconstruction (a.k.a.
model-fitting) methods. This latter class of methods is bound
to remain a reference, partly because in interferometry, optical
data will long remain much more sparse than radio data. In
some instances, e.g. with the very extended object of IBC’06
[10], OlIl is very difficult even with relatively large data set, and
thus often relies on the information provided by a parametric
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reconstruction. The latter is used at least as a guidance for
judging the (nonparametric) image reconstruction, and often
as a constraint for the support of the observed object, although
this process is not always explicit.

We adopt a general formulation of nonparametric image
reconstruction as the solution of a constrained optimization
problem. Within this framework, methods may differ by many
aspects, notably: the approximation of the data statistics, the
type of regularization, the optimization strategy and the explicit
or implicit accounting of missing phase information.

We present two recent nonparametric reconstruction
methods, representative of the two generic approaches for
dealing with the missing phase information. These nonpara-
metric reconstruction methods are evaluated on synthetic and
on astronomical data. The synthetic data allow us to study the
influence of several types of prior knowledge. In particular, we
show that contrarily to what is generally believed, appropriate
quadratic regularizations are able to perform frequency inter-
polation and are suitable for the problem at hand if the object
is compact: we propose a separable quadratic regularization
which favors the object compactness and yields images of
quality comparable to nonquadratic regularizations.

On the astronomical data we demonstrate the operational
imaging capabilities of these methods; for these data, which
may be considered representative of today’s optical long-base-
line interferometers, we show that the parametric approach
remains a choice of reference for OII. Finally, we discuss the
possible associations of both kinds of reconstruction methods.

The paper is organized as follows: Section II presents the
instrumental process so as to define the observation model.
Section III adresses the two main categories of prior informa-
tion used for the reconstruction of the observed astronomical
object: parametric models on the one hand, and regularization
terms for nonparametric reconstruction methods on the other
hand. Section V presents results on real data. Discussion and
concluding remarks are gathered in Section VI.

II. OBSERVATION MODEL OF LONG-BASELINE
OPTICAL INTERFEROMETRY

Let us consider a monochromatic source of wavelength A
with a limited angular extension. Its brightness distribution can
then be represented by z(€), £ = [£,¢]T € Q with Q a small
portion of the plane of the sky around the mean direction of ob-
servation.

An intuitive way of representing data formation in a
long-baseline interferometer is Young’s double hole experi-
ment, in which the aperture of each telescope is modeled by
a (small) hole letting through the light coming from an object
located at a great distance [11], [12]. At each observation time
t, each pair (k,£) of telescopes yields a fringe pattern with a
spatial frequency of by ¢(t)/A, where the baseline by ((t) is
the vector linking telescopes k£ and ¢ projected onto the plane
normal to the mean direction of observation. The coherence of
the electromagnetic fields at each aperture is measured by the
visibility or contrast a{3'?(¢) and the position of the fringes,
which are often grouped together in a complex visibility
ydata(t) = adata(t) exp(ig{at*(¢)). In an ideal experiment, the
Van Cittert-Zernike theorem [11], [13] states that the coherence

function (hence the complex visibility) is the Fourier transform
(FT) of the flux-normalized object z = z/ [, z(§)dé at spatial
frequency v = by, ¢(t)/ . Let us introduce notations for Fourier
quantities

yie(z, £) = / #(€) exp(—2im€Thy NE (1)

£eqQ
akf(x7t) = |ykl(x>t)| (2)
bre(x,t)) = arg {yre(z,t)} . 3)

In ground based interferometry, interferometric data are
corrugated by the atmospheric turbulence. Inhomogeneities in
the air temperature and humidity of the atmosphere generate
inhomogeneities in the refractive index of the air, which perturb
the propagation of light waves through the atmosphere. These
perturbations lead to space and time variations of the input pupil
phase ¢, which can be modeled by a Gaussian spatio-temporal
random process [14]-[16]. The spatial behavior of this process
is generally described by the Fried’s diameter rg [17]. The
smaller 7¢, the stronger the turbulence. Typically, its value is
about 15-20 cm for A = 0.55 pm at good sites. The typical
evolution time 7 of the turbulent phase is given by the ratio
79 of ro to the velocity dispersion of turbulence layers in the
atmosphere Av [14]: a typical value is a few milliseconds
at A = 0.55 pm. In the sequel, short exposure (respectively,
long exposure) refers to data acquired with an integration time
shorter (respectively, markedly longer) than 7.

A. Short Exposure System Response

For apertures of diameter D notably larger than r¢, the loss of
coherence due to the turbulence perturbations reduces the vis-
ibility of the fringes. This can be counterbalanced if the wave-
fronts are corrected by adaptive optics [18] (AO), at a rate faster
than 7, before the beams are made to interfere. In the sequel,
we assume that each aperture is indeed either small enough or
corrected by AO. Note, however, that it is possible to operate in
the multi-speckle mode [19].

In the Young’s holes analogy mentioned above, the remaining
effect of turbulence on interferometric measurements is to add
a phase shift (or piston) ¢y (t) at each aperture k to the wave
going through it. The interference between two apertures k& and
£ are thus out of phase by a random “differential piston” p,(t) —
vk(t), whose typical evolution time is of the order of 7y and
depends on the baseline [20].

A short exposure observation finally writes

gdata — are(x,t) + noise )

Pt (t) = pre(w,t) + @e(t) — @i(t) + noise [27].  (5)

When a complete interferometer array of Nt telescopes is
used, i.e., one in which all the possible two-telescope baselines
can be formed simultaneously, there are Ng = Np(Nt —1)/2
visibility phase measurements (5) for each instant ¢. These equa-
tions can be put in matrix form

¢ (t) = ¢(x.,t) + By(t) + noise [2r] (6)

where the baseline operator B of dimensions Ny X Nr is for-
mally defined in Appendix A.
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Fig. 1. Frequency coverages obtained with the IOTA interferometer on x Cygni
(observing run of May 2006). For a given baseline by, () and a given spectral
channel of mean wavelength A, the measured frequency is ¥ = [u,v]T =

bi.o(t)/ .

Note that the baseline by, ¢(t) between apertures k and ¢ de-
pends on time. Indeed, the aperture configuration as seen from
the object changes as the Earth rotates. It is thus possible to use
“Earth rotation synthesis”, a technique that consists, when the
source emission does not vary in time, in repeating the measure-
ments in the course of a night of observation to increase the fre-
quency coverage of the interferometer. A typical frequency cov-
erage obtained with the IOTA interferometer (see Section V-A)
is presented in Fig. 1. This Fourier coverage can be formally
represented by a short-exposure transfer function

nk,[(t)ei(ipl(t)_ipk(t))ts (v — bk,ﬂ(t)//\) 7

hv)=>"

k.l

>

where 6 denote the Dirac function and summations extend over
all observation instants and used pairs of telescope.

The complex gains 7 ¢(t) account for visibility losses that
originate from various causes. Some of them can be estimated
using observations of a calibrator (i.e., a star unresolved by the
interferometer, or whose diameter is precisely known, located
near the object of interest and with similar spectral type) and
compensated for. In the following, we consider that the 7y, ¢(¢)
are pre-calibrated, i.e., g ¢(t) = 1.

Equation (7) and Fig. 1 provide a first insight on the data pro-
cessing problem at hand. It is a Fourier synthesis problem, i.e.,
it consists in reconstructing an object from a sparse subset of its
Fourier coefficients. As shown by Fig. 1, interferometry gives
access to very high frequency coefficients, but the number of
data is very limited (a few hundreds). Measuring these data with
a sufficient signal-to-noise ratio (SNR) is quite delicate. Indeed,
in a short exposure, the differential pistons are expressed by
random displacements of the fringes without attenuation of the
contrast. But in long exposure measurements, averaging these
displacements leads to a dramatic visibility loss: a specific av-
eraging process must be used, as described in the next section.

769

B. Long Exposure Data

1) Principle: As mentioned above, the main obstacle to
long exposure data measurement is the differential pistons
@¢(t) which affect the phase of the visibility. On the one hand,
averaging the modulus of the visibility is possible; on the other
hand, some phase information can be obtained by carrying out
phase closure [21] before the averaging. The principle is to
sum short-exposure visibility phase data ¢{a**(¢)¢d2%2(t) and

data(+) measured on a triangle of telescopes (T}, Ty, T ).
From (5), one can check that turbulent pistons are canceled out

in the closure phase defined by

data (1) 2 glata (1) + G2 (1) + ¢332 (¢) + noise[2n]

= dpe(x,t) + Pom(z,t) + Prmr(x, t) + noise[27]
= Brem (2, ) + noise[27]. (8)

To form this type of expression it is necessary to measure three
visibility phases simultaneously, and thus to use an array of three
telescopes or more.

In the case of a complete interferometer array of N tele-
scopes, the set of closure phases that can be formed is generated
by, for instance, the B1x¢(t), 1 < k < £ < Nr, i.e., the closure
phases measured on the triangles of telescopes including tele-
scope T7. There are (Nt — 1)( Nt — 2)/2 of these independent
closure phases. In what follows, the vector grOI(JIping together
these independent closure phases will be noted 3°*** and a clo-
sure operator C' is defined such that

BU(1) £ CH™ (1) = Cd(, t) + noise[2n].

The second equation is a matrix version of (8): the closure op-
erator cancels the differential pistons, a property that can be
written CB = 0, with B the baseline operator introduced in
(6) and Appendix A. It can be shown [22] that this equation im-
plies that the closure operator has a kernel of dimension Np—1,
given by

KerC = {Ba,a € R¥ 1} 9)
where B is obtained by removing the first column from B.
The closure phase measurement thus does not contain all the
phase information. This classical result can also be obtained by
counting up the phase unknowns for each instant of measure
t. There are Np(Nt — 1)/2 unknown object visibility phases
and (Nt — 1)(Nt — 2)/2 independent measured phase clo-
sures, which gives No — 1 missing phase data. In other words,
optical interferometry through turbulence is a Fourier synthesis
problem with partial phase information. As is well known, the
more apertures in the array, the smaller the proportion of missing
phase information.

2) Data Reduction and Averaging: In practice, the basic ob-
servables of optical interferometry are then sets of three simul-
taneous fringe patterns obtained on a triangle of telescopes. The
output of the pre-processing stage (see for instance [23] for a de-
scription of the pre-processing with IOTA data) are as follows.

* Power spectra V,f,?)’(iata(t):

2),data data 2
VP = (s + )

(10)
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* Bispectra V(g) 429(1), j < k < ¢, defined by

(SRt + Ty ™t + Ty (t+ 7)) (11)

Notation (.), expresses the averaging in a time interval around
instant ¢. The integration time 7 must be short enough for the
spatial frequency to be considered constant during the integra-
tion despite the rotation of the Earth. It also impacts the standard
deviation of the residual noises on the measurement. Equation
(10) and (11) are biased estimates of the object spectrum and
bispectrum, see [24], [25] for the expressions of these bias.
The phases of the bispectra

i) 2 arg (VPO <k <t

constitute unbiased long-exposure closure phase estimators.

3) Observation Model and Data Likelihood: Using notation
sfata(t) = Vk(f )’data(t) and concatenating all instantaneous
measurements in vectors denoted by bold letters, the long-ex-

posure observation model writes

{sdata(t) — a2(x,t) + snoiso.(t)
ﬂdata(t) — C¢($,t) + ﬂnmse(t)[2ﬂ_] .

Noise terms are usually only characterized by estimated second-
order statistics, hence they are modeled as Gaussian processes:
8"°8(t) ~ N(0, Ry(yy), B"7°(t) ~ N(0, Rg(s)). Covariance
matrices R,(;) and Rg(;) are generally assumed to be diagonal
(as, for instance in the OIFITS data exchange format [26]), al-
though correlations are for instance produced by the use of the
same reference stars in the calibration process [27].

Note that the observation model (12) corresponds to a
minimal dataset for a complete Nr-telescope interferom-
eter. In practice, the data may contain closures without the
corresponding power spectra, or bispectra amplitudes. These
supplementary data are not processed the same way by all the
data reconstruction methods, in particular by the MIRA and
WISARD algorithms described in Section IV.

The neg-log-likelihood derived from this observation model
writes

(12)

Jdata(zy — Z {x2(z,t) + X%(ayt)} : (3)

t

The notation x2(z,t) denotes the x? statistics of the squared
visibility residuals at time ¢

(s%*2(t) — a® (z,t)) .

In the sequel, we shall use the term “likelihood” to denote the
various goodness-to-fit terms such as (13) derived from the dis-
tribution of the data.

The closure term x2(x,t) is usually also a x? over phase
closures residuals, but in order to account for phase wrapping
and to avoid excessive nonlinearity, the term X%(a; t) related to
the measured phase closures can also be chosen as a weighted
quadratic distance between the complex phasors

1

(o))

T - ata
Xa(z,t) = (z.1)) Ry (s7°(t) — a®

Bl (e )

) 2
Bkt 0B k(1)

Xp(x,t) =

j<k<t Var [
(14)

where B(z,t) = C¢(x,t) is the model of the measured phase
closure B4 (¢).

III. OBJECT MODELS

Imaging amounts to finding a flux-normalized positive func-
tion = defined over the support 2 which fits the data (12). One
way is to minimize the likelihood (13). Three problems are then
encountered.

1) Under-determination: because of the noise, the object
which minimizes the likelihood is not necessarily the good
solution: actually, several objects are compatible with the
data. This is a usual situation in statistical estimation,
which is here emphasized by the small number of mea-
sured Fourier coefficients, the noise level and the missing
phase information.

2) Nonconvexity: the phase indetermination leads to a non
convex! and often multi-modal data likelihood.

3) Non-Gaussian likelihood: phase and modulus measure-
ments with Gaussian noise leads to a non-Gaussian
likelihood in z. In other words, even if all the visibility
phases were measured instead of just the closure phases,
the data likelihood would still be nonconvex. We shall
come back to this point in Section IV-B.

To deal with under-determination, one is led to assume some
further prior knowledge on the object. In this section we re-
view two approaches: parametric modeling and regularized re-
construction.

A. Parametric Models

1) Introduction: The object is sought by minimization
of (13) using a parametric form z(#). The resulting criterion
6 — J492*2(2(0)) often exhibits further nonlinearities, but as the
number of parameters is very limited (typically dim(8) < 5)
global minimization is achievable. The minimal value of the
criterion gives an information on whether the chosen model is
appropriate to describe the brightness distribution of the object.
Additionally, the second derivative of J9%2(z(#)) around its
minimum allows the estimation of error bars.

For years, interferometric data were very sparse, essentially
because the number of telescopes in interferometers was quite
small. Most interferometers were two-telescope arrays and in
few cases three telescopes were available. The only way to in-
terpret the data was then to use parametric models with a very
small number of parameters, typically two or three. Among the
most used models, let us mention the uniform disk to measure
stellar diameters, and binary system models.

When objects are as simple as individual or binary regular
stars, such simple models can be used beforehand to prepare
the observations and anticipate likely visibility values. This
is very useful to conduct “baseline bootstrapping”, a process
which consists in observing a visibility of very low SNR using
a triangle of telescopes with two other baselines having a higher
SNR. Simple parametric models are also used to compute the
expected visibility of reference stars in order to calibrate the

IConvexity is a desirable property of a criterion when a minimization process
is conducted, which can furnish sufficient conditions for convergence of iter-
ative local optimization techniques toward a global minimum. A well-known
reference is the book by R.T. Rockafellar [28].
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response of the interferometer and overcome residual visibility
losses, such as those due to polarization effects.

Now that current interferometers yield richer data, more so-
phisticated models can be used. It is outside the scope of this
paper do describe the large number of parametric models which
are used nowadays, however we present in the following sub-
sections two trends in parametric modeling.

2) Fitting of a Geometrical Model: Parametric inversion can
be used to derive the geometrical structure of the brightness dis-
tribution of the object. An example among others is the deriva-
tion of the brightness profile I of a limb-darkened disk. Limb
darkening is an optical depth effect, which results in a drop of
the effective temperature (and hence intensity) towards the edge
of the stellar disk. Numerous types of limb-darkening models
exist in the literature. To cite only two, one can use a power law
[29] as follows:

(p)/1(1) = p (15)

or a quadratic law [30]

I(p)/1(1) =

where p, the cosine of the azimuth of a surface element of the
star, is equal to /1 — (2r/fLp)?, r being the angular distance
from the star center, and . p is the angular diameter of the pho-
tosphere. The parametric fit is actually done on complex visi-
bilities. In the Fourier domain, the power law limb darkening
model yields [31]

(a/2+2) —(rofp)?\"
Zfa/2+k+2) (k+1)< 4 )

k>0
17)
where the parameters are § = [a, f1.p]T, v, is the radial spatial
frequency and I the Euler gamma function (I'(k + 1) = k!).
The quadratic law model yields

1—a(l—p)—b(1-p)? (16)

atap J
(1—a—0b) Jlé() + J;ibl 3(/32/(2) 2bJ2(()

y(vp;0) = (18)

1/2—a/6 — b/12
where the parameters are = [a, b, 1.p]", ¢ = 7v,.01p; J1 and

J> are the first and second-order Bessel functions, respectively,
and

J3/2(¢) =

El (sm(@ )
T\ ¢

3) Physical Parameter Determination: An interesting possi-
bility offered by parametric inversion is to directly adjust phys-
ical parameters of the objects. An example can be found on a
study about the star ;» Cep from FLUOR interferometric obser-
vation [32]. Data was fitted with an analytical expression of the
brightness distribution that includes a temperature for the pho-
tosphere and a radiative transfer model of the molecular layer.

The model used is radial, and writes

- eos(0)).

A

VP2 +4¢%60) =B\ T)exp | ————
\/ 1- r2/®1aycr

x(r =

771
—7(A
+B(/\7 Tlayor) 1- €xp # (20)
\/ 1- T2/®1ayor
for sin(f) < ©,/O1ayer and
—27(A
£(r58) = BO\ Tiayer) |1 = exp | ———n &)
\/ 1- r2/®layer
21
otherwise, where the parameters are

0 = [9*7 61aycr7 ﬂaycr; ’T()\)], with 6* and 9laycr
the diameters of the star and the molecular layer respectively,
and 7()\) the opacity of the molecular layer as a function of the
wavelength. B(\, Tiayer) is the Planck function.

This model illustrates how to obtain a direct estimation of the
temperatures of the star and of the molecular layer from inter-
ferometric data. Interestingly, this type of model allows an ex-
ploitation of multi-wavelength observations that takes into ac-
count the chromaticity of the astronomical object.

B. Regularized Reconstruction

1) Introduction: In this framework, the sought object distri-
bution z is represented by its projection onto a basis of func-
tions, often defined as a shifted separable kernel basis

P-1Q-1

=2

p=0 ¢q=0

Y€ = pAEY (¢ —qAQ),  (22)

where dimensions P, ) and sampling steps A&, A( are
chosen so as to span the object support 2 and to satisfy the
Shannon—Nyquist condition with respect to the experimental
frequency coverage. Kernels -y are often box functions or sinc
functions, sometimes wavelets or prolate spheroidal functions
[33], [34]. The estimation aims at finding the coefficients
z = [£(0,0),...2(P — 1,Q — 1)]* so as to fit the data.
This approach is sometimes loosely called a non parametric
approach because the parametrization (22) is here not to put
further constraints on the solution, but only to allow its numer-
ical computation. To tackle the under-determination the data
likelihood (13) is combined with a regularization term in a
criterion of the form

J(z)

The regularization term JP*°" enforces the desired properties of
the object (smoothness, positivity, compactness, etc.). The regu-
larization parameter ;. allows to tune the regularization strength
or, equivalently, to select a data term level set {933 (z) < ¢}.
Of course, the choice of ;1 depends on the noise level. The com-
pound criterion (23) can be derived within a Bayesian para-
digm: the data model (12) is translated into a data likelihood
(13) which is combined with a prior distribution on the object
by Bayes’ rule to form the a posteriori distribution. Maximiza-
tion of the posterior distribution is equivalent to minimization
of the likelihood, i.e., of a regularized criterion such as (23).
Most regularization terms penalize the discrepancy between
the current solution and some a priori object £P™°", be it simply
the null object. In the OII context of very sparse and ambiguous

_ Jdata(x) +qurior(z). (23)
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datasets, the use of a meaningful prior object can be an efficient
way to orient the reconstruction and to improve the results. In
IBC’06 for instance, an a priori object was finally provided to
the participants: see [10, Fig. 3]. P™° can be obtained from
previous observations of the source with other instruments, or
derived from the fit of a parametric model to the interferometric
data at hand—see Section V-C below.

In the following, we briefly discuss the choice of the regular-
ization terms and introduce an original regularization criterion
that can be used on compact objects to enforce a “soft support™
constraint.

2) Quadratic Regularization: Quadratic regularization has
been applied to Fourier synthesis and OII by A. Lannes et al.
[34]-[36]. For relatively smooth objects, one can use a corre-
lated quadratic criterion expressed in the Fourier domain, with
a parametric model of the object’s power spectrum S,.. Such a
model was proposed for deconvolution of AO corrected images
in [37]

Sy (v=1w]) = k/ [v] + 0] — [FT{z"}w)|*.  (24)
This model, which relies on a prior object and three “hyper-pa-
rameters” (k, v,, p) has been used in various image reconstruc-
tion problems, including OII [9], [38]. Parameter v is a cutoff
frequency which is typically the inverse of the diameter of the
object’s support and avoids divergence at the origin, p charac-
terizes the decrease rate of the object’s energy in the Fourier
domain, and ¥ plays the role of the inverse of hyperparameter p
of (23) and can replace this parameter. As already mentioned,
an advantage of quadratic criteria is that it is possible to estimate
the hyper-parameters, by maximum likelihood for example [39].

A simple and efficient quadratic regularization is a separable
quadratic distance to the prior object £P"°. In Appendix B, we
show that the general expression of such regularization terms
under the OlI-specific constraints of unit sum and positivity [see
(40)] is

TP () =y " w(p,q)* /P (p, q)

p.q

(25)

where the a priori object £P™°" is chosen to be strictly positive
and normalized to unity.

In the absence of a meaningful object to be used for ZP™°", the
width w of the observed source is usually more or less known,
so we have found that a reasonable a priori object is an isotropic
one such as the Lorentzian model zP™°* (p, ¢) oc 1/(1 + 2(p* +
q?)/w?). Such a prior object can then be seen as enforcing a
loose support constraint.

3) Edge-Preserving Regularization: For extended objects
with sharp edges such as planets, a quadratic criterion tends
to over-smooth the edges and introduce spurious oscillations,
or ringing, in their neighborhood. A solution is thus to use an
edge-preserving criterion such as the so-called quadratic-linear,
or Ly — L criterion, which are quadratic for weak gradients
of the object and linear for the stronger ones. The quadratic (or
L5) part ensures good noise smoothing and the linear (or L)
part cancels edge penalization. Here we present an isotropic

version [40] of the criterion proposed by Rey [41] in the context
of robust estimation and used by Brette and Idier in image
restoration [42]

TP (@) =62 1) (g(p,q)/(s6)) where (26)
9(p.0) =\/Vea(p.a)2 + Vea(p.0)? @)
P(z) =z —In(1+ 2) (28)

with Vez and V.o the gradient approximations by finite dif-
ferences in the two spatial directions. The two parameters to be
adjusted are a scale parameter s and a threshold parameter 6. Pa-
rameter s plays the same role as the conventional regularization
parameter p and can replace it, with 1/ 2= 1; indeed, for small
values of g(p, q) each term of (26) reads 6%¢(g(p, q)/(s6)) =~
1/(25%) x g*(p. q).

4) Spike-Preserving or Entropic Regularization: For objects
composed of bright points on a fairly extended and smooth back-
ground, such as are often found in astronomy, a useful regular-
ization tools is entropy. Here, we adopt the pragmatic point of
view of Narayan and Nityananda [43] and consider that entropy
is essentially a separable criterion

TPt () =Y " h (x(p, q), 2” (p, ) (29)
p.q

where each pixel is drawn toward a prior value xP*°*(p, ¢) ac-
cording to a nonquadratic potential h also termed neg-entropy.
Classical examples of “entropic potential” are the Shannon en-
tropy hs(x,zP"") = zlog(x/xP™°") and the Burg entropy
hg(z, zPH°") = —log(x/xP*°") but many other non quadratic
potentials can be used, as shown in [43]. The major interest of
the nonlinearity of entropic potentials is that they help to inter-
polate holes in the frequency coverage. Side effects are empha-
sizing spikes and smoothing low level structures. As it result in
ripples suppression in the flat background and enhanced spa-
tial resolution near sharp structures, this behavior may be con-
sidered as beneficial in the context of interferometric imaging
though it also introduces substantial biases. Note that the inter-
ferometric imaging method BSMEM [44], winner of the IBC’s
2004 and 2006 [9], [10], or the VLBMEM method [9] are based
upon entropic regularization with potential hg.

Here we propose an entropic-like criterion which re-employs
the potential ¢ of (28) in a “white L, — L;” prior. Using the
same tools as in Appendix B, it can be shown that the general
form of a white Ly — L prior under the OI-specific constraints
of unit sum and positivity is

TP (g) = 34 (a(p0)) /¢ (57 (p,0)  (BO)

where 1) is a L — L1 function such as (28), and 1)’ denotes its
first derivative.

A interesting refinement of such priors is to model the ob-
served object with the combination of a correlated Lo regular-
ization for the extended component of the object and a white L,
regularization for the bright spots [45].
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IV. ALGORITHMS FOR REGULARIZED IMAGING

The regularized criterion (23) is not strictly convex and actu-
ally often multi-modal, because of missing phase information.
Therefore, the solution to the OII problem cannot be simply de-
fined as the minimizer of (23). Actually, it should be defined as
the point where the minimization algorithm stops. Most OII al-
gorithms (BSMEM, MIRA, WISARD) are iterative local descent
algorithms with the exception of MACIM [10] which uses simu-
lated annealing to search for the object’s support. In this section,
we present two iterative algorithms designed for OII: MIRA and
WISARD. Both are at the state of the art: WISARD ranked second
in IBC’04, while MIRA ranked second in IBC’06 and very re-
cently won IBC’08. They are able, like MACIM, to handle var-
ious prior terms—while BSMEM is dedicated to entropic regu-
larization. They differ, however, in their treatment of the phase
problem. There are essentially two approaches of this problem:
explicit algorithms use a set of phase variables and proceed with
a joint minimization over these variables and the object z, while
implicit approaches search for a minimum of (23) with respect
to &, often with some heuristics in order to avoid getting trapped
in local minima. Explicit algorithms include VLBMEM [9],
WIPE [46], [47] and WISARD. BSMEM, MACIM and MIRA are
implicit algorithms. In this respect, MIRA and WISARD are rep-
resentative of the two main streams of current OII algorithms.

A. Direct Minimization (MIRA)

The MIRA [48], [49] method (MIRA stands for Multi-aperture
Image Reconstruction Algorithm) seeks for the image by min-
imizing directly criterion (23). MIRA accounts for power spec-
trum and closure phase data via penalties defined in (13) and
(14). MIRA implicitly accounts for missing phase information,
as it only searches for the object . Since MIRA does not at-
tempt to explicitly solve degeneracies, it can be used to restore
an image (of course with at least a 180° orientation ambiguity)
from the power spectrum only, i.e., without any phase informa-
tion, see examples in [49], [50].

To minimize the criterion, the optimization engine is
VMLMB [51], a limited memory variable metric algorithm
which accounts for parameter bounds. This last feature is used
to enforce positivity of the solution. Only the value of the cost
function and its gradient are needed by VMLMB. Normaliza-
tion of the solution is obtained by a change of variables, i.e.,
the image brightness distribution becomes z), = z/ ) ; 2;,
where 2 are the internal variables seen by the optimizer with
the constraints that z;, > 0, Vk. Thus, & is both normalized and
positive. The gradient is modified as follows:

> (07/0x;) (0, /Oz)

J

0J)0z, = w;07/0x; | Y 2. (31)
j ¢

To avoid getting trapped into a local minimum of the data
penalty J42%a which is multi-modal, MIRA starts the mini-
mization with a purposely too high regularization level. After
convergence, the reconstruction is restarted from the previous
solution with a smaller regularization level (e.g. the value of
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1 is divided by two). These iterations are repeated until the
chosen value of p is reached. This procedure mimics the more
clever strategy proposed by Skilling & Bryan [52] and which is
implemented in MemSys the optimization engine of BSMEM.

B. A Self Calibration Approach (WISARD)

The self calibration approach developed in [22], [38], [53]
relies on an explicit modeling of the missing phase information
and allows one to obtain a convex intermediate image recon-
struction criterion. It is inspired by self-calibration algorithms
in radio-interferometry [54], but uses a more precise approxi-
mation of the observation model than first attempts such as [47].

This approach consists in jointly finding the object  and an
(Nt — 1)-dimensional phase vector a, corresponding to phase
components in the closure operator kernel of (9). It starts from a
generalized inverse solution to the phase closure equation (12),
using the operator C' 2 CT(C’C’T)il. By applying C" on the
left to (12) and (9), the missing phase components are made
explicit

3a(t)|CTB" (1) = ¢z, t) + Balt) + CTA™™ (). (32)
Itis thus tempting to define a pseudo-equation of visibility phase
measurement by identifying the term C8"°"°(t) of (32) with
a noise affecting the visibility phase [55]

¢4 (1) = $(=. t) + Ba(t) +¢"(1).
bla.alt).1)

(33)

Unfortunately, as matrix C'is singular, this identification is not
rigorously possible and one is led to associate an ad hoc covari-
ance matrix R, with the term ¢"*°(¢) so as to approximately
fit the statistical behavior of the closures. Recently, [22], [38]
have discussed possible choices for R.

Finding a suitable approximation for the covariance of the
amplitude measurements (12), cf. [22] and [38], gives a “my-
opic” measurement model, i.e., one that depends on the un-
knowns z and a

{adata(t) — a(z,t) + anoise(t), .
¢1 (1) = ¢ (z, alt), 1) + " (1)

with Gaussian noise terms on the modulus and on the ampli-
tude. Still, the resulting likelihood is not quadratic with respect
to &, because a Gaussian additive noise in phase and modulus
is not equivalent to an additive complex Gaussian noise on the
visibility. This is the problem of converting measurements from
polar coordinates to Cartesian ones, which has long been known
in the field of radar [56] and was identified only very recently in
optical interferometry [57]. The myopic model of (34) is thus
further approximated by a complex additive Gaussian model
such as

(34)

ydata(t) _ a(m7 t)ei(ﬁ(z,a(t),t) + ynoise(t).
The mean value and covariance matrix of the additive complex
noise term ¥"°**¢(¢) can be chosen so that the corresponding
data likelihood criterion is convex quadratic w.r.t. the complex

(35)
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Fig. 2.

ymodel(t) = a(x,t)e’®®2®):Y) while remaining close to the
real nonconvex likelihood [22], [57]. Finally, using (33)

y*?(t) = (H(t)z) @ exp (iBa(t)) + y"*°(t)  (36)

where H (t) is the discrete time FT matrix corresponding to the
instantaneous frequency coverage at time ¢ and ® denotes com-
ponent-wise multiplication of vectors. As clearly shown by (36),
the resulting model is now linear in z for a fixed a.

This last step leads to a data fitting term J{2'2 = that is
quadratic in the real and imaginary parts of the residuals—see
[22] and [38] for a complete expression. As discussed in
Section III, this data term is then combined with a convex
regularization term, so as to obtain a composite criterion

data

Jwisard (2:7 a) = Jwisard (z7 a) + l’l"]prior (x) ' (37)

Let us emphasize the interesting properties of .J%¥52™4_ On one
hand £ +— J“2*d(x .) is convex in z; on the other hand,
a— Jvsad( q) = Jdata (. a) is separable over measure-
ment instants ¢, which allows handling the phase step by several
parallel low-dimensional optimizations.

The WISARD algorithm makes use of these properties and
minimizes .J"**4 alternately in z for the current @ and in e for
the current . The structure of WISARD is the following: after a
first step that casts the true data model into the myopic model
(34), a second step “convexifies” the obtained model w.r.t. z, to
obtain the model of (36). After the selection of the guess and the
prior, WISARD performs the alternating minimization.

For the moment, this approach is less versatile than a di-
rect all-purpose minimization method such as MIRA: WISARD
cannot cope with missing phase closure information or take into
account bispectrum moduli. Indeed, as the pseudo-likelihood
associated to model (36) is derived, data that do no fit this re-
casting stage are not taken into account. Extending WISARD to
make it more versatile in the above-mentioned sense deserves
some future work.

C. Results on Synthetic Data

This section presents results of nonparametric reconstruction
methods on the synthetic interferometric data that were pro-
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Fig. 3. Frequency coverage from the IBC’04.

duced by C. Hummel for the 2004 International Imaging Beauty
Contest (IBC’04) organized by P. Lawson for the IAU [9]. These
data simulate the observation of the synthetic object shown in
Fig. 2 with the NPOI 6-telescope interferometer. The corre-
sponding frequency coverage, shown in Fig. 2, contains 195
square visibility moduli and 130 closure phases. The resolution
of the interferometric configuration, as given by the ratio of the
minimum wavelength over the maximum baseline, is 0.9 mas.

In Fig. 2 right, we present the image that a 132-m perfect
telescope would provide of the object. The cutoff frequency of
such an instrument would be twice the maximum value of the
frequency coverage used to produce the synthetic dataset (see
Fig. 3). It is therefore relevant to compare the reconstructions
with this image.

Various results of MIRA with quadratic regularizations are
presented in Fig. 4. The top image is essentially a “dirty recon-
struction”: it uses a separable quadratic penalty with a very low
value of regularization parameter p. The middle image is ob-
tained in the same setting, but with a positivity constraint. The
improvement is dramatic, as both the object support and its low
resolution features are recovered. An interpretation is that the
positivity plays the role of a floating support constraint, which
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Fig. 4. Results on IBC’04 with Mira. Top: “dirty” reconstruction (see text).
Middle: positivity constraint. Bottom: soft support quadratic regularization (25),
with prior object Lorentzian of 5 mas FWHM and 0.1 mas pixel size. All recon-
structions have 256 x 256 pixels.

favors smooth spectra and interpolates the missing spatial fre-
quencies. The bottom image uses the soft support quadratic reg-
ularization of (25), with a Lorentzian of 5 mas FWHM as a prior
object and a positivity constraint. This regularization, although
quadratic, leads to a very good reconstruction, with a central
peak clearly separated from the asymmetric shell.
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Fig. 5 presents two WISARD reconstructions. The left one
is obtained with the same soft support quadratic regularization
than the MIRA reconstruction Fig. 4, bottom. Although MIRA
and WISARD are based on different criteria and follow different
paths during the optimization, the reconstructions are visually
very close. With such a “rich” 6-telescope dataset the missing
phase information (33%) is reasonable and the differences be-
tween reconstructions, when they are present, originate mainly
from the choice of different regularization terms. As an ex-
ample, a reconstruction based on the white Lo — L; spike-pre-
serving prior of (30) with a constant prior object is shown in
Fig. 5, right. This last reconstruction presents finer details than
quadratic ones, possibly even finer than the smoothed object of
Fig. 2, at the price of some artefacts on the asymmetric shell.
However, the validity of these details is difficult to assess.

As a conclusion, the proposed soft support quadratic regular-
ization yields images of quality comparable to those obtained
with spike-preserving priors. Contrarily to what is generally
believed (see for instance Narayan and Nityananda [43]), spe-
cial-purpose quadratic separable regularizations are perfectly
suitable for image reconstruction by Fourier synthesis as soon
as the object is compact and positivity constraints are active.

V. PROCESSING REAL DATA

A. The Infrared Optical Telescope Array (I0OTA)

The IOTA interferometer, operated from 1993 to 2006 (cf.,
tdc-www.harvard.edu/iota/) on Mt Hopkins (Arizona, USA),
had variable baseline lengths and thus gave access to a broad
frequency coverage. It operated with three 45 cm siderostats
that could be located at different stations on each arm of an
L-shaped array (the NE arm is 35 m long, the SE arm 15 m).
The maximum nonprojected baseline length was 38 m, and the
minimum one 5 m. It used fiber optics for spatial filtering, and
an integrated optics beam combiner called IONIC [58]. It was
decommissioned in July 2006.

B. The Dataset

The dataset presented here correspond to observations of the
star x Cygni. Of the class of the Mira variables, x Cygni is
an evolved star whose extended atmosphere is puffed up by
the strong radiation pressure induced by fusion of metals (here,
metals means chemical elements heavier than Helium) in its
core. This late stage of evolution is appropriate for interfero-
metric imaging since the large stellar radius can be resolved by
optical interferometers. Moreover, these stars are usually bright
in the infrared, allowing robust fringe tracking.

x Cygni was observed during a six-night run in May 2006.
Night-time is used for observing and daytime is used to move
and configure the telescopes. The log of the interferometer con-
figurations is presented in Table I.

The reduced dataset is plotted in the two panels of Fig. 6. x
Cygni was observed over the whole H Band (1.5 um < A <
1.8 pm), and fringes were dispersed in order to obtain spectral
information. In this paper, we shall not address the chromaticity
of the object. Therefore, we use the diverse wavelengths only
as a way to increase the Fourier coverage. The frequency plane
coverage was previously presented in Fig. 1. The visibilities are
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Fig. 5. Results on IBC’04 with Wisard. Left: 120 x 120 pixels reconstruction with 0.125 mas pixel size using a soft support quadratic regularization (25), with
prior object Lorentzian of 2.5 mas FWHM. Right: 60 X 60 pixels reconstruction with 0.25 mas pixel size based on a white L, — L, regularization (30) with a

constant prior object and parameters § = 1, s = 1/2PQ).

TABLE I
x CYGNI OBSERVING LOG

Date Configuration® Date Configuration®
UT) A B C uT) A B C
2006 May 11 15 S 10 2006 May 14 30 15 0
2006 May 12 15 5 0 2006 May 15 35 15 21

2006 May 13 15 15 0

* Configuration refers to the location in meters of telescopes A, B, C on the
NE, SE, and NE arms, respectively. Position “0” corresponds to the arms’
intersection.

2006 May 16 35 15 25

presented in the upper panel of Fig. 6 as a function of the base-
line length in wavelength units. The closure phases are plotted
on the bottom panel. Due to the difficulty to represent these
phases as a function of a physical parameter, we simply present
them as a function of the observation data-point number. The
vertical lines indicate a change of interferometer configuration.

A closure phase equals to zero or 7 corresponds to a centro-
symmetric object. Thus, a preliminary inspection of the clo-
sure phases can show the presence of asymmetries. The higher
the frequency, the more apparent the asymmetry is. This makes
sense to an astronomer because photospheric inhomogeneities
are likely to be present at a smaller scale than the size of the
photosphere. In the case of x Cygni, the photosphere’s size es-
timate is 21.3 mas, to be compared with the resolution of the
interferometer, slightly less than 5 mas.

C. Image Reconstruction

In Fig. 7, we present three reconstructed images, obtained
using different methods and priors.

The first image corresponds to a parametric inversion of the
data using all the available spectral channels merged together.
The justification for such a polychromatic processing of the data
is ongoing work, however first results confirm a variation of the
angular diameter of less than 1 mas in the H band (S. Lacour,
private communication, 2008).

As stated, the quality of the reconstruction will depend
heavily on the correctness of the model of the object. For-
tunately, Mira variables are not completely unknown, and
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Fig. 6. I0TA dataset on x Cyg. Top panel: Visibility square 842 as a function
of the baseline length. Bottom panel: closures phases 84*** as a function of
the observation number. Labels of the type Axx-Bxx-Cxx correspond to the
telescope configurations (see Table I).

previous astronomical observations tell us that the star is ex-
pected to possess: i) a large limb-darkened photosphere; ii)
important asymmetries of the form of photospheric “hot-spots”;
and iii) a close, warm, molecular layer surrounding the photo-
sphere at around one stellar radius of the photosphere.
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Fig. 7. Reconstructed images of the star x Cygni, right: contour plot with
levels 10%, 20%, . . ., 90% of the maximum. From top to bottom: parametric
reconstruction, WISARD with white L, — L; prior, MIRA with a separable
quadratic penalization towards a prior parametric solution. Details on the
different methods are given in Section V-C. Note the colossal size of the star:
at the distance of x Cygni (170 pc; [59]), 5 mas correspond roughly to the
distance Sun-Earth (1 astronomical unit).

This simplistic theoretical model (i.e., a limb darkened disk,
a spot and a spherical thin layer) is converted to a geometrical
parametric model, which is adjusted to the data through the min-
imization of .J92%2(:(8)) of (13). The image presented in the left
panel of Fig. 7 corresponds to the geometrical model with best
fit parameters.

These parameters give direct information on the structure of
the object, and error bars can be estimated: the star diameter is
21.49 £ 0.11 mas and the hotspot contrastis 1.70 £ 0.04%. Note
that the requirements of a parametric reconstruction, in terms
of frequency coverage, are much less stringent than that of a
nonparametric one. Thus, parametric inversion can also be used
with each spectral channel separately, to determine the spectral
energy distribution of the surrounding atmospheric layer.

The second image was produced using the WISARD software
described in Section IV-B with a white Lo — L; prior—see
(26). The last image was reconstructed using MIRA, see
Section IV-A, and more importantly, using a prior solution
in the white quadratic setting of (25). The prior solution is a
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limb-darkened disk whose parameters are determined by model
fitting on the visibilities.

D. Discussion

Fig. 7 shows that, for the sparse data at hand, the more strin-
gent the prior, the more convincing the reconstruction looks to
an astronomer.

More precisely, the white Lo — L1 prior used by WISARD does
not allow to distinguish more than a resolved photosphere and
the fact that some asymmetry is present. The form of the re-
constructed photosphere and its surrounding can be questioned
when compared to what is expected from the theory. Besides, on
the presented reconstructions, MIRA was used with a much more
informative prior and is in good agreement with the parametric
reconstruction. This image is however interesting because the
reconstruction is notably different from a simple disk, and adds
an asymmetry—a “hotspot”—on the surface. The presence of
an asymmetry could be foreseen by looking at the raw closure
phases (right panel of Fig. 6). The fact that this asymmetry ap-
pears similarly—in terms of flux and position—on the para-
metric and on the nonparametric image reconstructions is a con-
vincing argument to validate both images.

Note that, on the MIRA reconstruction, an emission sur-
rounding the photosphere is present, but its reality is difficult to
assert on the reconstructed image. Hence, it should be pointed
out that neither of the nonparametric reconstructions exhibits
the molecular layer which is revealed by the parametric recon-
struction.

VI. CONCLUSIONS

In recent years, long baseline optical interferometers with
better capabilities have become available. Routine observations
with three or more telescope interferometers have become a re-
ality. Although quite sparse with respect to radio arrays, the spa-
tial frequency coverage allows one to study more complex ob-
jects and to reconstruct images. In this paper, we have described,
besides the parametric reconstruction approach, two nonpara-
metric image reconstruction methods, MIRA and WISARD. MIRA
is based on the direct optimization of a Bayesian criterion while
WISARD adopts a self-calibration approach inspired from radio-
astronomy. As such, these two methods are representative of
the two families of state-of-the-art nonparametric reconstruc-
tion methods [9], [10].

On rich-enough data, which are currently available only from
simulations, both methods demonstrate a valuable and compa-
rable capability for imaging complex objects. On such data,
the differences between reconstructions originate mostly from
the choice of different regularization terms. We have reviewed
common regularization criteria and proposed an original regu-
larization criterion that can be used on compact objects to en-
force a “soft support” constraint. This criterion, although it is
quadratic, yields images of quality comparable to that obtained
with spike-preserving priors on the IBC’04 dataset.

We have demonstrated the operational imaging capabilities
of these methods on a IOTA dataset of y Cygni. However, for
these data, which may be considered representative of today’s
optical long-baseline interferometers, we have shown that the
parametric approach remains a choice of reference for OII.
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The experience gathered while trying to extract the most in-
formation from real-world data, both in the work described here
and elsewhere [31], suggests that the optimal processing of mea-
surements from present-day interferometers should make use
of both approaches in an alternate fashion as described below.
With a sparse frequency coverage, a parametric reconstruction
is useful to obtain ab initio a first estimate for the observed ob-
ject. A parametric reconstruction will not reveal any unguessed
feature, but it can be used to guide nonparametric reconstruc-
tions as an initial guess or as a prior object for instance. Then
the reconstructed images are very useful to understand the struc-
ture of a complex object since they are most often the very first
insight one gets about the source at this angular resolution.

The fidelity of nonparametric reconstructions remains limited
in a photometric sense and can therefore seldom be used to infer
astrophysical parameters. In fine, parametric models remain the
choice of reference for estimating astrophysical parameters re-
lated to the very physics of the objects of interest.

It is therefore very likely that even in the yet to come imaging
era of optical interferometry, i.e., when much larger optical
interferometric arrays become operational, the parametric
approach will remain a useful tool for astrophysical modeling,
even though it will no longer be necessary to initialize the
imaging process.

APPENDIX A
THE CLOSURE AND BASELINE OPERATORS C' AND B

Let Nt be the number of telescopes of a complete interfero-
metric array. We have the following definitions:

Ayt | Tdy.
B2 1) By, 2 [Tt | T
0 | By,
oNré[_BNTJHdWTJyWJJ (38)

for Ny > 3. It is easy to see that CB = 0. The generalized
inverse C' of C, defined by ct 2" [CC’T]il, is such that
ceC' = Id.
APPENDIX B
QUADRATIC REGULARIZATION TOWARDS
A PRIOR OBJECT IN OI

A general expression for a quadratic separable regularization

is given by

TP (@) = w(p, @)a(p, q)°

p.q

(39)

where w(p, q¢) > 0, Vp, g, otherwise the criterion is degenerated.

The default solution £P™°" is obtained by minimizing the cost

function in the absence of data and subject to the constraints
(normalization and nonnegativity)

{zprior = arg min_.,,. Jprior(x) (40)

st. >0 and 3 x(p.q) =1

where £ > 0 means z(p,q) > 0, Vp, ¢. Assuming for the mo-
ment that all inequality constraints are inactive at the solution,
the Lagrangian for the constrained problem can be written as

L) = 17 (@) =2 [ Y et~ 1),

p,q

(41)

Minimizing L£(z; ) with respect to = only readily yields
zT(\) = argming £(£;\) = )\/w. The optimal Lagrange
multiplier A" is identified by requiring the normalization of
z (A1) and, finally, the default solution is

1/w(p, q)

Y Hw'd)

which is normalized and strictly positive since w > 0. This ad-
ditionally validates our hypothesis that the inequality constraints
were all inactive at the solution. Combining (39) and (42) yields
the expression of the quadratic, separable, loose support regu-
larization term of (25).

2P (p,q) = [ (AD)] (p.q) = 42)
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