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ABSTRACT
The on-orbit calibration of the transfer function (TF) of a
spaceborne optical telescope is of paramount importance
for the restoration of its recorded images. We propose a
novel method based on a physical modeling of the TF and
on the automatic extraction from the image of sub-images
containing appropriate patterns such as step functions. A
least-square criterion is computed with all the extracted sub-
images, and is minimized as a function of the unknowns,
which are the TF parameters and the step parameters. Our
simulation results validate the method and show a precise
estimation of the full 2D TF.

1. INTRODUCTION

The on-orbit calibration of the transfer function (TF) of a
spaceborne telescope may be performed using resolution
targets, but this reduces the time available for observations.
Methods not needing the acquisition of such special purpose
images are thus preferable. Yet, estimating the TF from a
single image is a difficult problem akin to blind deconvolu-
tion (BD), as both the TF and the object are unknown.

BD usually considers the TF characteristics as nuisance
parameters and aims at restoring the observed object, while
the situation is reversed for on-orbit calibration. In BD the
object modeling (by, e.g., a Markov random field) yields
many object parameters to be estimated (usually pixel val-
ues). Additionally, the PSF or TF modeling is often rather
crude and not physically motivated (e.g., a3×3 pixel PSF).

In order to obtain a good precision on the TF estimation,
we instead choose to extract and use sub-images in which
the object can be described by simple parametric models,
e.g., step functions, similarly to [1, 2]. Additionally, we
propose to use a physical modeling of the TF. It is param-
eterized by the optical aberrations of the instrument, which
are expanded on (a limited number of) Zernike polynomials,
as proposed for the BD of turbulence-degraded images [3].

Section 1 is devoted to the principle of the TF estima-
tion method from a set of selected sub-images. Section 2
validates the estimation method by means of simulations.
Section 3 discusses the automatic selection of suitable sub-
images from the whole image. Section 4 illustrates the per-
formance of the complete extraction plus estimation process
on a realistic simulated image.

2. TRANSFER FUNCTION ESTIMATION

2.1. Observation model

We assume that the recorded imagei is the noisy sampled
convolution of the observed objecto (Earth scene) with the
instrument’s PSFh:

i = [h ⋆ o]
x

+ n, (1)

where[·]
x

denotes the sampling operator.
The instrument is assumed to be partially known. Its TF

h̃ is modeled as the product of the (known) detector transfer
function (DTF)h̃det with the optical transfer function (OTF)
h̃opt:

h̃ = h̃opt × h̃det. (2)

The OTF is modeled through the aberrations (or phase)ϕ
in the instrument’s pupil [4] expanded on the first Zernike
polynomialsZl: ϕ(x, y) =

∑11
l=4 alZl(x, y) . Indeed in a

space telescope there are essentially low order aberrations,
which we here limit to Zernike polynomialsZ4 (defocus) to
Z11 (spherical aberration). The unknown of interest is the
OTF but these aberrations allow us to parameterize the lat-
ter with few, physically meaningful coefficients. Assuming
that the spectral bandwidth is small compared to the cen-
tral wavelength, the OTF is related to the aberrations in the
pupil through [4]:

h̃opt = FT
(

|FT−1(P (x, y)ejϕ(x,y))|2
)

, (3)

whereP is the pupil (or aperture) function, and FT denotes
the Fourier transform. Lastly, the ratiofc/fn of the OTF’s
cutoff to the detector’s Nyquist frequency is assumed to be
known, and will be taken as 1 in the following.

2.2. Considered sub-images

The TF estimation is performed on sub-images which should
have a high frequency (HF) content, accept a simple para-
metric model, and be sufficiently numerous in an image to
lead to a reasonable statistical contrast. Linear featuressuch
as step functions meet all these conditions and are the ones
used herein.
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Fig. 1. Parameters of a step function: position and orienta-
tion (left), height and offset (right).

2.3. Principle of the transfer function estimation

We start with a set ofK sub-imagesi1, . . . , ik, . . . , iK ,
whose supportSK may be very different. These sub-images
each correspond to an object which is assumed to be a step
(or Heavyside) function. This object, denoted byok, is fully
characterized by its orientationθk, its distance to the origin
dk, its heightαk and its lower value (or offset)βk, as illus-
trated on Fig.1.

Because the estimation of the OTF boils down to that of
the first aberrations, we shall denote the PSF byh({al}11

l=4).
The estimation is performed by minimizing a least square
criterion, which is non-linear in the aberrations:

J ({al}, {θk, dk, αk, βk}) =
K

∑

k=1

∑

(p,q)∈Sk

|ik(p, q)−

[h({al}11
l=4) ⋆ ok(θk, dk, αk, βk)](p, q)|2. (4)

This criterion measures the discrepancy between the sub-
image models[h ⋆ ok]

x
and the sub-imagesik extracted

from the recorded imagei. In the case of a stationary white
Gaussian noise, which is a reasonable approximation for
satellite imaging, minimizing this criterion is equivalent to
searching for a maximum likelihood solution.

2.4. Minimization of the criterion

The criterion is minimized jointly in all parameters, which
are the aberrations and the object parameters, globally for
all sub-images.

An essential step of the minimization of the criterion
is its computation, which is essentially that of a sub-image
model[h ⋆ ok]

x
for the current parameters. The computa-

tion of h is easily performed by using eqs. (2) and (3) and
by replacing the FT by an FFT in the latter. We use the
Radon (“Fourier slice”) theorem to reduce the computation
burden of the criterion to 1D computations. Indeed, the fol-
lowing properties can easily be derived: firstly, the image of
an object which is a linear feature (in particular a 2D step
function) is linear too, and results from the spreading of a

1D image profile along the direction of the linear feature.
Secondly, this image profile in turn is the 1D convolution of
an object profile with the line spread function (LSF). Lastly,
the LSF is the 1D inverse Fourier transform of a cut of the
2D transfer function.

The minimization is accelerated both by analytic con-
siderations and by reasonable approximations. Firstly, the
criterion is quadratic in any (αk, βk), so that it can be min-
imized analytically in these variables, as a function of the
other unknowns. Secondly, we have checked that the angles
θk can be estimated precisely without knowing the aberra-
tions,i.e., with a perfect PSF. To do this, we minimize crite-
rion J as a function of all(θk, dk) for null aberrations. One
notices that the minimization can be performed separately
on each variable pair(θk, dk) because each only appears in
thek-th term ofJ .

Thanks to these considerations, the criterion to be mini-
mized then only contains the variables of interestal that are
related to the OTF, and the distancesdk. Indeed, these must
be re-estimated because they code for the step positions,
which depend on the shape of the PSF. The minimization
is achieved by means of the Powell method, which does not
need the analytic expression of the criterion’s gradient.

3. VALIDATION OF THE ESTIMATION METHOD
ON SYNTHETIC IMAGES

A first validation of the method was to estimate the OTF
on sub-images that were computed as mentioned above by
making use of the Radon theorem; the results are very good,
but probably not representative of the estimation quality at-
tainable on more realistic images.

In the following, the sub-images are32 × 32 and com-
puted by the discrete convolution of an oversampled object
with an oversampled PSF, which approximates a continu-
ous convolution and is then sampled appropriately. Thus,
a simulated sub-image is not computed in the same way as
the corresponding sub-image model during the estimation.
This aims at validating the robustness of the estimation with
respect to small modeling errors and at preparing the vali-
dation on more realistic images such as the one presented in
Section 5.

The OTF is defined through the 8 first Zernike polyno-
mials, with aberration coefficients that make up a total phase
variation of2π/8 rd RMS. The DTF is that of a CCD detec-
tor and takes into account the temporal integration along the
satellite track. The global transfer function and its two (op-
tical and detector) components are represented on Fig.2.

We first present simulation results with noiseless im-
ages. Even with only two sub-images oriented at0 and90o,
the estimated transfer function is very good in these direc-
tions (see Fig.3). It is very poor in other directions, with
a maximum error of0.10; this illustrates the fact that each
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Fig. 2. Transfer function used for the simulations, obtained
as product of the optical TF by the detector TF. Profiles
alongx in solid line, alongy in dashed line.

# of sub-images 2 4 8
Maximum error 10.2 10−2 2.6 10−2 2.0 10−2

MSE 2.1 10−2 0.49 10−2 0.41 10−2

Table 1. Maximum error and mean-square error (MSE)
on the transfer function estimation for two, four and eight
noiseless sub-images.

sub-image of a step provides information in one direction,
perpendicular to the step. When the number of sub-images
increases while the steps’ orientations diversify, the esti-
mation quickly improves. Table1 summarizes the transfer
function estimation results for two, four and eight noiseless
sub-images, with regularly spaced orientations. In particu-
lar for eight sub-images the maximum estimation error over
the whole spatial frequency domain is0.02.

Fig. 3. Profiles of the true (— alongx, −−− alongy) and
estimated (+++) transfer functions from two noiseless sub-
images. Left: real part; right: imaginary part.

We now consider eight sub-images with the same ori-
entations as above, and assess the robustness of the method
with respect to noise. For this purpose, the sub-images are
degraded by an additive stationary white Gaussian noise of
standard deviationσn, and the transfer function is estimated
from these eight sub-images. The considered values ofσn

σn 0% 1% 3.2% 10%
Max. error 2.0 10−2 2.0 10−2 2.0 10−2 5.8 10−2

MSE 0.41 10−2 0.41 10−2 0.46 10−2 0.99 10−2

Table 2. Maximum error and mean-square error (MSE) on
the transfer function estimation for eight sub-images with
varying noise levels. The noise is stationary white Gaussian,
with a standard deviation of0%,1%,

√
10% and10% of the

image maximum value respectively.

are1%,
√

10 ≈ 3% and10% of the image maximum value.
The first value is typical of an Earth observing telescope,
the second one is a more noisy case, and the third one is an
extreme case.

Up to a value ofσn = 3%, the estimation quality re-
mains almost constant and the maximum error does not ex-
ceed2% (see Table2). For 10% noise, the error becomes
very important and more sub-images would be needed to
reach a reasonable maximum error value.

4. AUTOMATIC EXTRACTION OF THE
SUB-IMAGES

The extraction is achieved in two steps. In the first step
we select sub-images which meet the following conditions:
firstly, the extension of any sub-image both along the step
and orthogonally to it should be greater than the assumed
PSF diameterd; in the following we used = 20 pixels.
Secondly,|m1 −m2| > 2 ∗max(s1, s2), wherem1, m2 de-
note the mean values ands1, s2 the standard deviations of
the two regions separated by the edge. For these purposes,
we use a standard edge detector followed by a polygonal-
ization step and by a region growing segmentation starting
on both sides of the edges that are long enough.

The second step further checks the sub-images for con-
sistency with the model of a convolved and noisy step func-
tion. This step is akin to sub-pixel localization of edges, as
already noted by Boneset al. [2].

Each sub-image is rotated so that the edge is aligned
with the vertical axis, using the orientation given by the
polygonalization step. Then two tests are conducted on the
resulting (horizontal) profiles. Firstly, the variations in each
profile near both ends should be consistent with the image
SNR. The sub-image is rejected if these variations are above
2σn. Secondly, the central part of the profiles should be
close to the mean profile but may be shifted because the
orientation is only approximatively known at this stage. We
compute by a least-square fit a shift for each profile, in order
to precisely align the edge with the vertical axis. A linear
regression step is conducted on the vector of shifts, and the
sub-image is rejected if the residual shift standard deviation
is above a given threshold. In the following we use a thresh-
old of 0.1 pixel.
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5. VALIDATION OF THE GLOBAL METHOD ON A
REALISTIC IMAGE

We have used an aerial1704 × 1704 metric image of the
Grenoble region (c©IGN) to generate the object by a radio-
metric transformation that sharpened the edges. We could
not use the original image itself as an object; indeed, this
image was already somewhat smooth because of its acqui-
sition process. A426 × 426 4m resolution image of this
object is obtained by discrete convolution (see the discus-
sion in Sect. 3). The PSF is the same as that of Sect. 3, and
the standard deviation of the added noise is1%.

Figure4 shows the image and the12 sub-images result-
ing from the extraction. The result of the transfer function
estimation is presented in Fig.5. The maximum error is
2.5 10−2, and is only reached for frequencies for which no
sub-image provides information.

Fig. 4. Test image and extracted sub-images.

Fig. 5. Modulus of the difference between the true transfer
function and its estimate. The maximum value is2.5 10−2.
The lines indicate the directions orthogonal to the edges of
the selected sub-images.

6. CONCLUSION

A novel method has been presented for the identification
of the transfer function of an optical telescope from a sin-
gle image. This method can be used both for the perfor-
mance assessment of the instrument after launch and for the
restoration of the images recorded by the instrument. This
method is based on: (1) a physical modeling of the TF via
the optical aberrations of the instrument; (2) the extraction
of sub-images containing features such as natural step func-
tions that can be parameterized easily; (3) the global trans-
fer function estimation from the set of all sub-images by a
least-square criterion minimization which is non-linear in
the unknown aberrations.

The estimation part of this method has first been vali-
dated of simulated sub-images of step functions. Then, the
complete sub-image extraction and transfer function esti-
mation procedure has been validated on a realistic image.
Future work include:

• taking into account other features, such as lines and
double edges, to increase the number of useful sub-
images;

• validating the method on undersampled images. It is
intrinsically suitable for such images, but the under-
sampling should still yield some degradation of the
performance, because the PSF of an undersampled
image is coded with less pixels;

• the automatic tuning of some of the threshold parame-
ters for the extraction and selection of the sub-images.
These parameters should depend on system parame-
ters such asfc/fn and the image SNR.

The authors thank F. Champagnat for fruitful discussions.
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