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Unambiguous phase retrieval as a cophasing
sensor for phased array telescopes
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Cophasing a multiple-aperture optical telescope (MAOT) or optical interferometer requires the knowledge of
the tips/tilts and of the differential pistons on its subapertures. In this paper we demonstrate in the case of a
point source object that a single focal-plane image is sufficient for MAOT cophasing. Adopting a least-square
approach allows us to derive an analytic estimator of the subaperture aberrations, provided that these are
small enough (typically for closed-loop operation) and that the pupil is diluted noncentrosymmetric. We then
provide the validation of this estimator by simulations as well as a performance comparison with a more con-
ventional iterative algorithm of phase retrieval. Finally, we present the experimental validation of both esti-
mators on a laboratory test bench; our results, especially subnanometric repeatability, demonstrate that focal-
plane sensors are appropriate for the cophasing of phased array telescopes. © 2008 Optical Society of America
OCIS codes: 010.7350, 100.5070, 110.5100, 100.3190, 120.3180.
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. INTRODUCTION
ultiple-aperture optical telescopes (MAOTs) are made of
collection of subapertures, coherently combined in order

o reach the diffraction limit of a single monolithic tele-
cope whose aperture would cover the subapertures.
AOTs are now currently used for astronomy, to provide
illiarcsecond resolution thanks to ground-based stellar

nterferometers with hectometric baselines [1–3]. Similar
nstruments are under study for space missions, particu-
arly in the context of the search for exolife [4,5]. MAOTs
an also be considered for wide-field space telescopes,
hen the primary is deployed after launch because it does
ot fit in the rocket fairing. Examples are the James
ebb Space Telescope for astronomy [6] or multiple-

perture arrays for Earth observation from a geostation-
ry orbit [7].
Performance of optical instruments can be degraded by

hase perturbations. This is particularly the case of
AOTs, operating at the diffraction limit with very long

aselines or with subpupils that are not mechanically tied
ogether with optical precision. Perturbations include
uasi-static positioning errors or high-frequency contribu-
ors such as vibrations or propagation through the turbu-
ent atmosphere. To increase the signal-to-noise ratio
SNR) of the collected data, it is necessary to cophase the
rray, i.e., to stabilize optical paths at zero optical path
ifference when interferometric data is recorded. As real-
ime correction over each subaperture can be performed
ith adaptive optics [8], the very specific issue raised by
AOTs is the correction of the differential piston/tip/tilt

rrors between the subapertures, as illustrated by Fig. 1.
hus the most critical component of an interferometer is
he cophasing sensor, the goal of which is to measure
hose modes.
1084-7529/08/051000-16/$15.00 © 2
Many correction devices can be considered, such as tip/
ilt mirrors and delay lines in each arm, or a global de-
ormable mirror. An obvious solution is to use a dedicated
ip/tilt sensor for each subaperture and a classical inter-
erometric (pairwise) piston sensor. But the complexity of
his solution quickly increases with the number of subap-
rtures, and the local tip/tilt measurements must be
inked together.

Another solution is to retrieve aberrations from focal-
lane intensity measurements, an old idea first intro-
uced by Gerchberg and Saxton [9] in the electron micros-
opy context and then rediscovered by Gonsalves [10].

Phase retrieval estimators use a single focal-plane im-
ge of an unresolved source observed through the instru-
ent to reconstruct the aberrated phase, coded in the pu-

il transmittance. Analytic expression of the phase
olution can be derived in specifically crafted experi-
ents, such as when one has images taken with and
ithout an exponential filter in the pupil plane [11]. How-
ver, in general, one has to rely on iterative methods to
stimate the aberrations that are most compatible with
he known constraints in the pupil plane and the mea-
ured images. Successful approaches include gradient-
earch algorithms [12], where a least-square (LS) crite-
ion is minimized as a function of the unknown
berrations, and iterative Fourier-transform algorithms
10,13], where the estimates are Fourier-transformed
ack and forth to ensure compatibility with the data.
Phase retrieval has been shown for a centrosymmetric

upil to lead to a theoretical ambiguity on the sign of the
ven part of the phase [10,14,15]. In practice for mono-
ithic instruments, the obscurations can be sufficiently
symmetric to allow phase retrieval to be used. Such is
he particular case of the Hubble telescope: The telescope
008 Optical Society of America
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eing already in orbit, its aberrations were characterized
ith the blurred images of unresolved stars [16,17].
In the most general case (unknown object or any pupil

onfiguration), it is possible to remove the sign ambiguity
y using at least a second image differing by a known
hase, conventionally a small defocus [18]. This phase-
iversity method is usually applied for the phase mea-
urement on extended objects (see Mugnier et al. [19] for
recent review of phase diversity). Aberration measure-
ent by phase diversity is now routinely used for the cali-

ration of monolithic instruments [20] and has been ex-
ended to MAOTs [21–23]. While phase diversity is
ptically very easy to implement, it requires considerable
omputing power for real-time correction, as it is most of-
en based on an iterative algorithm. Efforts in making
hase diversity faster have thus been made: better nu-
erical algorithms [24,25], modified error metric used to

stimate the aberrations and object from the data
26–28], and the promising research of an analytical solu-
ion [29].

For a point source object however, one does not need
he full generality of the phase diversity. The simpler
hase retrieval can be used with a noncentrosymmetric
perture to retrieve the aberrated phase without ambigu-
ty. Since MAOT pupils may be noncentrosymmetric,
hase retrieval becomes an interesting solution, as the
mage of an unresolved source is often available. This
ource can be an off-axis star or an internal source and
an be used for real-time cophasing or as a complemen-
ary tool for periodic calibration.

The objective of this paper is to present two focal-plane
avefront estimators, which determine simultaneously

he pistons/tips/tilts on all the subapertures of a MAOT
ith a noncentrosymmetric pupil from the sole focal-
lane image of an unresolved source. In Section 2, the im-
ge formation process is described in Fourier space, lead-
ng to the derivation of the aberrated optical transfer
unction (OTF). In Section 3 a LS analysis is adopted for
ts good statistical properties [30], and a first conven-
ional estimator is recalled, based on an iterative algo-
ithm. In the case of a diluted nonredundant pupil and
hen subaperture aberrations are small, a second estima-

Piston
i=1

i=2
i=3

Tip/Tilt

Im
ag

in
g

Control

2R
Cophasing

Fig. 1. Piston and tip/tilt on a MAOT.
or requiring only a single Fourier transform—and thus
articularly suited for real time cophasing—is derived.
he theoretical performance of both estimators is then
nalyzed by simulations in Section 4. Finally, an experi-
ental validation on the ONERA laboratory test bench
RISE allows us to compare in Section 5 the algorithms
n experimental data for the DarWin [31] AstRonomical
ringe sensor (DWARF) validation.

. EFFECT OF ABERRATIONS ON THE
MAGE OF AN UNRESOLVED SOURCE
. Direct Model
he following model assumes monochromatic light and
oint source objects, although most of the calculations
ould be extended to known or centrosymmetric objects
nd to wide wavebands. The image i recorded by a detec-
or is then simply the sampled point-spread function
PSF) corrupted by noise.

To simplify notation, the MAOT pupil is assumed to be
ormed by NT circular subapertures of identical diameters
Fig. 1). To implement a phase-retrieval algorithm the pu-
il has to be sampled, and the coordinate choice we make
s such that the PSF computed from the sampled pupil

atches the experimental PSF. This fixes the scaling fac-
or of the pupil and in practice the radius R (in pixels) of
ach subaperture.

Each subaperture n is also characterized by the coordi-
ate of its center un and by its complex transmission pn.
he total pupil transmission can then be written as

p = �
n=1

NT

pn � �un
, �1�

here �un
denotes a shift by the vector un.

An extensive treatment of the problem would require
he use of a different transmission function for each sub-
perture, which would allow us to take the obscurations
secondary mirrors, spiders) into account. However, for
larity of exposition, all obscurations will be neglected in
he following and all transmissions will be assumed equal
o unity. The modulus of the subaperture transmission pn
s then described by the disk function �:

��u� = �1 for 0 � �u� � R

0 elsewhere
. �2�

The phase of pn is expanded on a local basis of scaled
ernike polynomials [32] so that

pn�u� = ��u�exp�j �
k=1

kmax

aknZk�u�� , �3�

here j2=−1 and akn is the rms amplitude in radians of
he mode of order k on the subaperture n. As all apertures
ave the same radius, they share the same modes. Since
he MAOT-specific aberrations are pistons �k=1� and tips/
ilts �k= �2,3	�, we will consider k =3.
max
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. OTF Characteristics
he autocorrelation s of the pupil is given by

s�u� = �p � p��u� = �
u��R2

p�u��p*�u + u��, �4�

nd s will be called for convenience the OTF, although it
s not normalized and even though the considered optical
ystem does not need to be shift invariant. If we express
xplicitly the OTF as a function of the subaperture trans-
issions, we get

s = �
n=1

NT

�
n�=1

NT

�pn � �un
� � �pn� � �un�

�

= �
n=1

NT

�
n�=1

NT

�pn � pn�� � �un−un�
. �5�

quation (5) demonstrates that the OTF is composed of a
entral peak (the zero-frequency peak) surrounded by
T�NT−1� satellite peaks. Each pair of subapertures de-
nes one baseline, to which correspond two symmetric
eaks in the OTF. Figure 2 (top row) shows, for example,
he real OTF obtained from a pupil in an equilateral-
riangle layout and without aberrations. In presence of
berrations, the peaks are complex, but as the PSF is
eal, the OTF has Hermitian symmetry.

From Eq. (5) and Eq. (3) it is clear that the OTF is non-
inear with respect to the �akn	 coefficients, which ex-
lains the difficulty of the phase-retrieval problem.
Two aberration estimators will be derived in the follow-

ng. For one of these, one of the main assumptions will be
hat all considered phases are small compared with
� rad. This will allow us to simplify this nonlinear prob-
em. The small phase assumption is a realistic case for a
ophasing sensor mostly used in closed loop. However, ad-
itional procedures may first be required to lock the sys-
em, i.e., to achieve a nearly cophased state (see the re-
ated discussion in Subsection 5.D).

ig. 2. Shapes of the OTF modulus and phase for no aberration
first row), a piston (second row), a tilt (third row) on one
perture.
Under the assumption of small phases, it is demon-
trated in Appendix A that

s 
 �
n=1

NT

�
n�=1

NT

� exp�j�
k=1

3

�nn�
k Zk� � �un−un�

, �6�

here ��� � � is the autocorrelation of the subaperture,
hich describes an OTF peak without aberration, and
here by definition

�nn�
k � akn + �kakn�, �7�

Zk�u� �
1

2  u��S�u�

�Zk�u�� − �kZk�u� + u�	du�, �8�

here S�u� is the overlapping area between a subaper-
ure and itself translated by u, and with �k=1 if the radial
rder of Zk is odd, and �k=−1 if it is even.

Equation (6) allows us to understand the behavior of
he OTF modulus and phase. When all subaperture aber-
ations are null, the phase of the OTF, called the phase
ransfer function (PTF), is null (Fig. 2, top row). In the
resence of aberrations, the OTF modulus is not affected
t first order; only the PTF is.
The shape of the perturbation in the PTF is then deter-
ined by the Zk modes. Fig. 2 (center and bottom rows)

resents the effects of simple aberrations in the pupil.
hen a piston (Fig. 2, center) or a tilt (Fig. 2, right) are

pplied to a single subaperture, 2�NT−1� satellite peaks
re affected. If these peaks do not overlap (see further on
or a discussion on this), the OTF modulus is strictly un-
ffected in the piston case and barely changes in the tilt
ase. In the PTF a piston aberration creates phase offsets,
hile a tilt aberration creates phase planes. Equation (8)

onfirms that the first three PTF modes, the Zk modes,
re similar to Zernike modes, Zk, but with a double sup-
ort. Thus the first Zk modes are mutually orthogonal,
hich means piston measurements do not interfere with

ip/tilt ones.
The amplitude of the perturbation in the PTF is mea-

ured by the coefficients �nn�
k . For a piston (a mode of even

adial order), it is equal to the differential aberration am-
litudes between the two considered subapertures. Con-
equently, the piston amplitudes are antisymmetric; i.e.,
ymmetric peaks are affected by opposite amplitudes. In
ontrast, for a tip or tilt (modes of odd radial order), the
mplitudes of the modes are symmetric. Both peaks are
ffected by the same amplitude, equal to the total of the
ubaperture aberration amplitudes.

Thus, as long as the OTF peaks do not overlap, Eq. (7)
ndicates that the phase of a satellite peak nn� and of its
ymmetric counterpart n�n is determined entirely by the
berrations on the two subapertures n and n� (whose in-
ercorrelation forms the peak). The phase of the peaks
ormed by the intercorrelation of the subaperture n or n�
ith another subaperture will also depend on one of these
berration sets, but not on both. To disentangle the two
ntricated sets on the peak nn�, a natural idea is to check
hether any kind of linear combination of the �nn�

k can al-
ow us to retrieve all the aberrations.

This kind of approach requires the OTF peaks not to
verlap, and consequently we will restrict the following
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ections to pupils with nonoverlapping peaks (cases of
eak overlapping will be discussed in Subsection 3.B.4).

. LEAST-SQUARE ESTIMATORS
he next subsections establish the construction of two ab-
rration estimators based on a LS approach. They allow
s to retrieve all aberrations on every subaperture from
ne single focal image. The first estimator is a well-known
21] iterative algorithm normally based on a two-image
nalysis, which we will further demonstrate to work with
nly one image. It will also serve as a reference in simu-
ations. The second estimator is our analytical estimator
USCHIA (Fast Unambiguous Sensor for CopHasing In-
erferometric Arrays).

Both estimators use the classic LS criterion L, propor-
ional to the squared difference between the discrete Fou-
ier transform (noted by a tilde) of the image and the
TF. In the following the noise on the image will be as-

umed white. If it is also additive and of Gaussian distri-
ution, then the LS approach is equivalent to a
aximum-likelihood approach. Otherwise, for other types

f noise, the LS criterion still allows one to minimize the
istance between those quantities. The criterion is writ-
en as

L�a� = �
u�D

1

2�2 �s�a,u� − ĩ�u��2, �9�

here a is the aberration vector and �2 is the variance of
he noise on the image. The sum is computed on the sup-
ort of the OTF, the frequency domain D (bounded by the
TF cutoff frequency).
The vector â of the estimated aberrations contains the

berrations that are solutions of the phase-retrieval prob-
em, defined as the aberrations that minimize L:

∀�k,n�
�L

�akn
�â� = 0. �10�

f the real and imaginary part operators are respectively
oted R and I, then the classic expression [22] of the cri-
erion gradient with respect to the akn coefficient is ex-
ressed as

�L

�akn
=

1

�2 �
u�D

R��s − ĩ�
�s*

�akn
� . �11�

. Iterative Estimator
sing Eq. (11), the criterion can be effectively minimized
y a gradient-based iterative method, such as the
onjugated-gradient method.

A brief overview of the procedure is given here. The ini-
ial data are the focal image, the geometry of the input
upil, and a starting point of the aberration estimates. At
ach iteration, the current image is computed from the
oint source and the current phase estimates. The algo-
ithm modifies the aberrations so as to decrease the gra-
ients; then these aberrations become the current phase
stimates. This process is repeated until the gradient val-
es drop below a user-defined threshold. Iterative algo-
ithms require several (typically 10–30) iterations to con-
erge to the final aberrations, each iteration representing
fast Fourier transforms (FFTs) to compute. This estima-

or has been successfully implemented, and while its per-
ormance is excellent (see Section 4) as it achieves optimal
ata reconstruction in the LS sense, it inconveniently re-
uires many FFTs to do so.

. Proposed Analytical Estimator
n this section, we will use the small-phase approxima-
ion of the OTF from Eq. (5), in order to obtain an estima-
or based on an analytical formulation. This estimator
ses much less processing power than the iterative algo-
ithm previously described.

. Gradient and LS Criterion in Small Phases
et D0 be the support of the OTF central peak. We will
plit the computation of the criterion in Eq. (9) into two
arts: one computed over D0 and the other over the rest of
he frequencies �D\D0�. The central peak contains mixed
nformation on only the incoherent images of all subaper-
ures, while the useful interferometric information re-
ides within the high-frequency satellite peaks. To keep
he following calculations in this paper tractable, the part
f the criterion computed on the central peak will be dis-
issed. The new criterion L� is then

L��a� = �
u�D\D0

1

2�2 �s�a,u� − ĩ�u��2. �12�

ote that the minimization of L� is sufficient to derive all
seful information for MAOT cophasing, i.e., information
bout the individual aberrations on the subapertures.
he gradient to minimize with respect to akn is

�L�

�akn
=

1

�2 �
u�D\D0

R��s − ĩ�
�s*

�akn
� . �13�

quation (13) shows that the gradient of the criterion de-
ends on the gradient of the conjugated OTF. The fre-
uencies at which the OTF is constant with respect to akn
o not contribute to the gradient of the criterion. Thus to
ompute the right-hand term of Eq. (13) we need only ex-
ress skn, defined as the part of the OTF that depends on
his coefficient akn. As Eq. (6) demonstrates, skn is a sum
f �NT−1� pairs of peaks:

skn = �
n�=1

n��n

NT ��� exp�j �
k�=1

3

�nn�
k� Zk��� � �un−un�

+ �� exp�j �
k�=1

3

�n�n
k� Zk��� � �un�−un� . �14�

hen the gradient of s* with respect to the akn coefficient
s
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�s*

�akn

= − j �
n�=1

n��n

NT ��Zk� exp�− j �
k�=1

3

�nn�
k� Zk��� � �un−un�

+ ��kZk� exp�− j �
k�=1

3

�n�n
k� Zk��� � �un�−un� , �15�

ith �k=1 if Zk is of odd radial order and �k=−1 otherwise
ecause of Eq. (7).
Let us call Dnn� the support of the frequency peak cor-

esponding to the baseline vector nn�. As the pupil con-
guration is diluted and nonredundant, the product of the
TF by its conjugated derivative is nonzero only on Dnn�
nd Dn�n domains. Moreover, this product is imaginary as
he exponential terms simplify:

s
�s*

�akn

= − j �
n�=1

n��n

NT

�Zk�2 � �un−un�
+ �kZk�2 � �un�−un

�.

�16�

s the real part of this expression is null, Eq. (13) be-
omes

�L�

�akn
= −

1

�2 �
u�D\D0

R� ĩ�u�
�s*

�akn

�u�� . �17�

he aberrations solution verifies the equation

∀�k,n�,
�L�

�akn
��kn̂� = 0. �18�

hen we explicitly express the gradient as in Eq. (15):

�
u�D\D0

I� ĩ �
n�=1

n��n

NT �Zk� exp�− j �
k�=1

3

�nn�
k�̂ Zk��� � �un−un�

+ ��kZk� exp�− j �
k�=1

3

�nn�
k�̂ Zk��� � �un�−un��u� = 0.

�19�

sing the Hermitian symmetry of ĩ, the centrosymmetry
f Zk, and the sign of �k, it can be shown that the second
erm of the sum is equal to the first one. As a conse-
uence, only half the peaks need to be considered when
ooking for the estimates, and we have

∀n, �
u�D\D0

I� ĩ �
n�=1

n��n

NT �Zk� exp�− j �
k�=1

3

��nn�
k�̂ Zk��� � �un−un���u� = 0. �20�
The following two sections distinguish the specific case
here pistons are the only aberrations on the subaper-

ures from the more general case of pistons mixed with
ip/tilts. In both cases we will show that the subaperture
berration akn can be retrieved from the sum �n

k defined
y

�n
k = �

n�=1

n��n

NT

�nn�
k �21�

nd from the average aberration ak over the subaper-
ures:

ak =
1

NT
�
n�=1

NT

akn�. �22�

. FUSCHIA for the Piston-Only Case
et us consider the case when aberrations are only pis-

ons. Using Eq. (7), Eq. (21), and Eq. (22) with �k=−1, �n
1

s

�n
1 = NT�a1n − a1�. �23�

hen the aberration a1n is

a1n = a1 + �n
1/NT. �24�

hile a1 is unknown and cannot be determined, this is
ot a problem for the purpose of MAOT cophasing, as the
nowledge of a global piston is not relevant. In practice,
1 is arbitrarily fixed at a convenient value, generally
ero.

To retrieve the aberration a1n, �n
1 has to be computed.

his will be done by computing the coefficients �nn�
1 using

q. (20). Note that as Eq. (6) and Eq. (15) are exact, Eq.
20) is. It is also further simplified as the function Z1 is
eal, constant, and equal to unity. When aberrations are
nly pistons, Eq. (20) then simply becomes

∀n, �
n�=1

n��n

NT

I�exp�− j�nn�
1̂ � �

u�Dnn�

ĩ�u���u − un + un��� = 0.

�25�

s all Dnn� are nonoverlapping frequency domains, this
eans the sum is null at all frequencies if and only if all

ts terms are

∀n, ∀ n� � n Arg�exp�− j�nn�
1̂ � �

u�Dnn�

ĩ�u�

���u − un + un��� = 0 �mod ��, �26�

hich becomes

∀n, ∀ n� � n − �nn�
1̂ + Arg� �

u�Dnn�

ĩ�u�

���u − un + un��� = 0 �mod ��. �27�

sing the result of Eq. (24), â is finally given by
1n
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â1n =
1

NT
�
n�=1

n��n

NT

Arg� �
u�Dnn�

ĩ�u�

���u − un + un��� �mod 2��. �28�

In Eq. (28), only the modulo 2� solutions are kept since
he other solutions of Eq. (18) correspond to maxima of
he L� criterion when s and ĩ are phase opposite, as dem-
nstrated by Eq. (12). Therefore, there is only a single so-
ution in the nonambiguous piston range �−� ,�� for the
iston on each subaperture n, explicitly given as a func-
ion of the image. Let us recall that i is the image of an
nresolved source, so ĩ is very close to the OTF s. Thus
he physical meaning of Eq. (28) is that the phase is ex-
racted from each OTF peak with a weighting factor equal
o the modulus � of an unaberrated peak. This means in
articular a higher phase contribution near the center of
he peak, where the signal-to-noise ratio is higher.

. FUSCHIA for Mixed Pistons and Tilts
ith aberrations other than pistons, the phase terms
ithin the exponential of Eq. (20) vary over Dnn�. For

mall aberrations however, the exponential can be ex-
anded into a Taylor series. Equation (6) shows that the
odulus of ĩ on each peak is equal to � on the first order.
et 	 be the phase of ĩ. Then Eq. (20) becomes

∀n, �
n�=1

n��n

NT

�
u�Dnn�

I���2Zk��u − un + un��

��1 + j	�u� − j �
k�=1

3

�̂nn�
k� Zk��u − un + un���� 
 0,

�29�

hich simplifies into

∀n, �
n�=1

n��n

NT

�
u�Dnn�

	�u���2Zk��u − un + un��


 �
n�=1

n��n

NT

�
k�=1

3

�̂nn�
k� � �

u�Dnn�

��2ZkZk���u − un + un��� .

�30�

he integral of �2ZkZk� on each frequency domain Dnn�
s independent of n or n�. Even with the �2 weighting,

1 ,Z2 ,Z3 is still an orthogonal basis, so that �2ZkZk� is
onzero if and only if k�=k. Thus Eq. (30) allows us to es-
imate �k, defined in Eq. (21), as
n
∀n, �n
k̂ = �

n�=1

n��n

NT

�̂nn�
k




�
n�=1

n��n

NT

�
u�Dnn�

	�u���2Zk��u − un + un��

�
n�=1

n��n

NT

�
u�Dnn�

��2Zk
2��u − un + un��

.

�31�

rom �n
k the pistons can be retrieved as described Subsec-

ion 3.B.2. Since the tips or tilts are Zernike modes of odd
adial order, Eq. (7) implies that

�n
k = �NT − 2�akn + NTak. �32�

o compute ak we perform a closure by summing all �n�
k on

ll apertures n�:

�
n�=1

NT

�n�
k = 2NT�NT − 1�ak. �33�

inally, the aberration k on the subaperture n is given by

âkn =
�n

k̂

NT − 2
−

1

2�NT − 1��NT − 2� �
n�=1

NT

�n�
k̂ . �34�

quations (31) and (34) allow us to retrieve all tip/tilt ab-
rrations on each subaperture without ambiguity. One of
USCHIA’s major strengths resides in the fact that Eqs.

28), (34), and (31) require the computation of only one
FT to retrieve both the pistons and the tips/tilts. Conse-
uently FUSCHIA brings a major speed improvement
ver the iterative solution, being on average 20 times
aster.

Equation (34) is defined only if NT
3. This may seem a
ather surprising result since NT=2 allows one to mea-
ure piston, as demonstrated by Eq. (24) and well estab-
ished with the Young setup. This results from the fact
hat for NT=2 the pupil is centrosymmetric, and so the
ven part of the phase cannot be retrieved. This raises no
roblem for piston, as the average piston (even mode) is
lready known to be not seen and thus is not solved for.
ut the differential piston (odd mode) can be correctly es-

imated. A similar situation occurs for tip/tilt, which can
e better illustrated from the focal-plane data: If a similar
ip/tilt is applied on both apertures, then both PSFs shift
y the same amount, leading to a global linear phase in
he OTF argument. But if opposite tips/tilts are applied,
hen two identical separated PSFs are observed. It is pos-
ible to derive the absolute value of the tip/tilt from the
istance between the two PSFs. More precisely, this mea-
urement involves only the OTF modulus, since the image
s also centrosymmetric and thus the phase of the OTF is
ero. But it is not possible to guess to which aperture be-
ongs each PSF from the sole focal-plane image and thus
o estimate the tip/tilt sign. The first example shows that
he average tip/tilt (coefficient �12

k+,k� �1,2	 in Appendix
) can be estimated, since it is linked to an odd mode, and
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he second example confirms that the sign of the differen-
ial tilt (coefficient �12

k−,k� �1,2	) cannot be estimated, be-
ause the differential tip/tilt is an even mode. The full
easurement was possible in the first example because

here was no differential tip/tilt. Since the general case is
combination of average and differential tips/tilts, the

ack of the differential estimation prevents us from esti-
ating the individual tips/tilts.

. Case of Compact Pupil Configurations
o far we have assumed that the peaks in the OTF do not
verlap. This restriction means in practice that some spa-
ial frequencies will be missed by the MAOT, which is bad
or instantaneous imaging of extended objects. However,
he instrument may take advantage of aperture synthesis
y rotation to complete its frequency coverage. Many in-
erferometers are also not designed primarily for direct
maging purposes and rely on image reconstruction soft-
are.
In practice, however, one may have to work with an in-

trument whose pupil configuration has its OTF peaks
verlapping. This may arise in two cases. The first case is
hen the pupil is redundant. More than one pair of aper-

ures then form an identical baseline, thus contributing to
he exact same spatial frequency peak. The phases cannot
hen be easily disentangled (FUSCHIA would not be
sed). The second case is when peaks overlap but not to-
ally. This happens in particular for compact pupil con-
gurations meant for imaging, whose OTFs do not reach
ero inside defined frequency domains of interest. As
USCHIA is dedicated to cophasing or fringe-tracking in-
truments and is not directly used for science measure-
ents, the pupil can sometimes be optically remapped

nto a diluted pupil. If not, it may still be possible to use
USCHIA, though not optimally. If the peak overlap
akes place in the outer periphery of the peaks, then the
entral unambiguous part of the peaks can be extracted
nd used with success in place of the whole peaks. Our
xperimental data in Section 5 were in fact processed
ith this procedure.

. NUMERICAL VALIDATIONS
n this section are presented the results of simulations
omparing both LS estimators (FUSCHIA and the itera-
ive retrieval method). The typical performance in closed
nd open loop is analyzed, as well as the algorithm linear-
ty when confronted by piston and tip/tilt ramps.

. Conditions of Simulations
complete simulation environment has been developed to

alidate and to compare both estimators. It is able to com-
ute the focal-plane image of any observed object viewed
hrough an interferometric instrument of a given input
upil.
All simulations are performed with a wavelength � of

50 nm. The object is a point source, while the chosen pu-
il, shown on Fig. 2, is an equilateral triangle. The dilu-
ion factor, defined as the shortest baseline divided by the
ubaperture diameter, is chosen equal to 2 (the minimum
ilution for such a diluted pupil). This choice reflects a
ompromise between the need to have a diluted pupil for
he analytical algorithm to work optimally and maintain-
ng a decent spatial frequency coverage.

Images with 64�64 pixels are simulated at increasing
uxes. As the object is a point source, most of the flux is
oncentrated on a small zone of the image. Only this zone
f interest (typically 14�14 pixels) is used for analysis.
he total flux per frame ranges from 102 to 107 photoelec-

rons. Photon noise is added, as well as a typical read-out
oise of standard deviation �d=10.0 electrons per pixel.
ne hundred images are simulated for every flux, each
ne corresponding to a different noise outcome. Both esti-
ators are fed these images as well as the input pupil.
ote that as the iterative estimator is meant to be used

or cophasing purposes, the starting aberrations for its
nitialization are chosen null in all cases. The estimator
omputes the subaperture aberration estimates. Finally,
he statistical errors (standard deviations and mean er-
ors) are computed for each aberration on each subaper-
ure.

. Results and Analysis

. Linearity
he linearity results, obtained from piston and tilt ramps
f �−� ,�� with a flux of 105 photoelectrons per frame, are
resented on Fig. 3.
For piston, both estimators behave linearly on the do-
ain �−� /2 ,� /2�, with a wrapping of � when the modulus

f the amplitude increases beyond � /2. This is a classical
esult for monochromatic piston estimation. On each lin-
ar part the slope for both curves is unity. As no approxi-
ation is realized in the piston-only case, FUSCHIA and

he iterative estimator produce identical results (to ma-
hine precision), as expected. In contrast, in the tilt lin-
arity test, while the iterative estimator is linear on the
hole domain �−� /2 ,� /2�, FUSCHIA remains linear only
n a limited domain that roughly corresponds to �
0.3� ,0.3��. The main reason for the shape of the plot
utside this domain is not the failure of the small-phase
pproximation (though this plays a minor role) but phase
rapping. The phase of the OTF is indeed explicitly ex-

racted by a very simple routine (arctangent). As the am-
litude of the tilt mode across an aperture is 4akn, when
kn is greater than � /4, the amplitude exceeds �. The
hase derived by arctangent is then partially wrapped.
he implementation of an unwrapping procedure is
lanned for future simulations. Note that the iterative es-
imator does not suffer from this problem, as the phase is
ot explicitly extracted by the algorithm. In practice the
omain limitation for the tilt estimation should not con-
titute a major problem when cophasing an instrument,
s the aberrations to correct should already be smaller
han 0.3�.

FUSCHIA for tilts requires the validity of the small-
hase approximation; thus the slope of FUSCHIA’s curve
ithin the linear domain is not exactly unity. Figure 3(c)

hows the remaining bias to be smaller than � /80. For a
ophasing system in closed loop this implies only that
ore FUSCHIA iterations will be needed to correct the

berrations. This might, however, constitute an issue in
pen loop.
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. Performance and Comparison of the Two Estimators
igures 4 and 5 allow us to examine the accuracy (error)
nd repeatability (standard deviation) of each estimator
n the absence of aberrations. The performance in such a
ase is representative of what could be expected in a
losed loop.

The mean error and the standard deviation curves are
xtremely similar, as the bias is very low. Within our flux
ange the bias is insignificant (zero) in the piston estima-
ion test, and it remains under 0.1 nm for fluxes higher
han 104 photoelectrons per frame in the tilt estimation
est. The repeatability performance is very good, as the

(a)

(b)

(c)
ig. 3. Responses of FUSCHIA and of the iterative estimator to
piston ramp (a) and a tilt ramp (b). The tilt estimation is

lightly biased for FUSCHIA in the linear domain due to the ap-
roximated nature of the algorithm (c).
tandard deviations are below 1.0 nm rms for fluxes
igher than 2�104 photoelectrons per frame in the piston
ase and 105 photoelectrons per frame in the tilt case.

The shape of the standard deviation curves is typical of
his type of phase estimation. Within the flux range of
102,107� photoelectrons per frame chosen for our figures,
he standard deviation � (in nanometers) theoretically
ollows the equation [33]:

� =
�

2�

�

SNR�npix

�35�

here the � coefficient is a constant coefficient expressed
n radians measuring the global performance of the algo-
ithm, npix the number of pixels per frame (here 14�14),
nd SNR is the signal-to-noise-ratio per pixel defined by

SNR =
N/npix

�N/npix + �d
2

, �36�

ith N the total flux per frame in photoelectrons. The
elative importance of the parameters N /npix and �d de-
ermines the regime of the estimator. When the flux is
ower than 1.3�104 photoelectrons per frame, the noise is
ominated by the detector noise and � is proportional to
/N. For fluxes higher than 1.3�104 photoelectrons per

rame, the Poissonnian photon noise becomes dominant

ig. 4. Error and standard deviation on piston estimates for
USCHIA and the iterative estimator (no aperture aberrations).



a
t
d
t
2
g
c
t
o
F
t
t
a

c
o
m
t
r
s
�
e
a
p
t
e
F

t
s

5
A
I
c
b
d
s
t
t

F
w
b
a
t
c
s
f
t
w
T

F
F

F
F
�

1008 J. Opt. Soc. Am. A/Vol. 25, No. 5 /May 2008 Baron et al.
nd � is proportional to 1/�N. This change of slope from 1
o 1/2 is especially visible on Fig. 4(b). The � coefficients
erived in the photon regime range are identical for the
wo estimators, about 1.3 rad on the piston curves and
.6 rad on the tilt ones. These results prove that tilt is
enerally more difficult to estimate than piston. They also
onfirm that the analytical estimator performs similarly
o the iterative one for cophasing purposes. The behavior
f both estimators in open loop is depicted by Fig. 6 (resp.
ig. 7), which corresponds to simulations done with a pis-
on (resp. a tilt) of � /6. On one hand, the piston estima-
ions are nearly unchanged, and the � coefficient remains
t 1.3 for both estimators.
On the other hand, the tilt results show a strong dis-

repancy between the estimators. As underlined previ-
usly in the linearity test, the bias of the analytical esti-
ator is not zero in open loop. Figure 7(c) shows that as

he flux increases, the bias of the analytical estimator
eaches a plateau at 1.0 nm. This results in a nearly con-
tant mean error of about 2 nm for fluxes higher than 2
104 photoelectrons per frame. The error of the iterative

stimator, however, behaves as in the previous case, going
s low as 0.01 nm at 107 photoelectrons per frame. The re-
eatabilities are indeed still very good for both estima-
ors, as the � coefficient for the tilt curve is 2.2 for the it-
rative estimator, though it goes up to about 3.3 for
USCHIA.

ig. 5. Error and standard deviation on tilt estimates for
USCHIA and the iterative estimator (no aperture aberrations).
Thus, overall, the iterative estimator is more adapted
o open-loop systems, while FUSCHIA is particularly
uited to closed-loop ones.

. EXPERIMENTAL VALIDATION
. BRISE Bench

n order to evaluate the performance of focal-plane
ophasing sensors, ONERA has built a multipurpose
ench called BRISE [34,35] (Banc Reconfigurable
’Imagerie sur Scènes Etendues). It includes mainly a
egmented mirror that can introduce calibrated piston/
ip/tilt aberrations, a focal-plane sensor, and both an ex-
ended scene and a reference point source.

The experimental validation of the iterative and the
USCHIA estimators was done with the BRISE internal
avefront sensor and with DARWIN’s fringe sensor
readboard, DWARF, installed on the bench [DARWIN is
future European Space Agency (ESA) mission dedicated

o the search for life signs on Earthlike planets]. The con-
ept, selected by ONERA, is based on a combination tele-
cope that focuses the three beams of the instrument on a
ocal-plane camera. Differential piston and tip/tilt are es-
imated with phase retrieval algorithms. The breadboard
e used on the bench was developed for ESA by Kayser-
hrede/ONERA/Alcatel Alenia Space [36,37]. In Subsec-

ig. 6. Error and standard deviation on piston estimates for
USCHIA and the iterative estimator (aperture aberrations of
/6).
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ions 5.B and 5.D we present critical steps for the test-bed
alibration before we detail in Subsections 5.E and 5.F
he experimental results obtained with DWARF on
RISE.

. Accordance between the Numerical and the Physical
odels
he direct model allows image simulation from the known
xperimental parameters (object, pupil configuration,
avelength, etc). It is used to model the experiment, par-

(a)

(b)

(c)
ig. 7. Error, standard deviation, and bias on tilt estimates for
USCHIA and the iterative estimator (aperture aberrations of
/6).
icularly to evaluate the influence of the various noises
nd experimental parameters on the cophasing sensor
erformance. But it is also used in the phase-estimation
lgorithms for the resolution of the inverse problem
phase reconstruction from the image). Therefore, the di-
ect model must be as close as possible to the physical
odel; the previously listed parameters must be esti-
ated accurately. Since the most critical parameter is the
umerical pupil, i.e., the 2D support in pixels over which
he Zernike phase screens are applied, it must match the
xperimental one. Its estimation at a given wavelength is
ade by a LS fit between the experimental OTF derived

rom the image i of the nearly unaberrated source and a
heoretical OTF depending on parameters due to align-
ent and sampling defaults.
The numerical pupil can then be used for both image

imulation and aberration estimation. Thus, to verify the
ccordance between the direct and experimental models,
e apply a sequence of Zernike mode of interest on a
iven subaperture (as illustrated Fig. 8), and we compare
he images obtained by simulation and by experiment.
irst, in the first row, images are taken without aberra-

ion. Then, in the second row a piston of � /2 is introduced
n a subaperture, which makes the fringes shift in the di-
ection of this aperture. Last, in the third row, an angular
ilt of 2.44� /D is applied on one aperture, which produces
PSF shift in the focal plane such that its first dark ring

s tangent to one of the other two superimposed PSFs.
he Young fringes we can see are perpendicular to their
aseline.

. BRISE Characterization
nother critical issue is the bench stability. Therefore,
pecial care has been taken to control errors that could
imit the performance. In order to characterize the bench

aberration simulated PSF experimental PSF

ig. 8. Agreement between the experimental (right column) and
he direct model (center column) in response to a given perturba-
ion (left column).
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tability, we studied the temporal evolution of the esti-
ated pistons, using both the deformable mirror and a

lanar mirror. The corresponding images are simulta-
eously recorded on the camera, as illustrated on Fig.
(a). Measurements are made at high flux with an expo-
ure time representative of the BRISE acquisition; esti-
ated aberrations are computed with the FUSCHIA algo-

ithm. Figure 9(b) plots the piston temporal evolution on
he planar mirror; it shows a global tilt oscillation at 2 Hz
ith subnanometric amplitude. We can see in Fig. 9(c)

hat using the deformable mirror, this oscillation is per-
urbed due to the positioning noise introduced by the mo-
ile mirror platforms, which is less than 3 nm. However,
n each case, there is no temporal drift, even with more
ignificant exposure time; repeatability tests can be per-
ormed. They will be made with the planar mirror, which
orresponds to the operating condition in closed loop
phase perturbation near zero) and which does not have
ositioning noise.

. Conditions of the Experiment
or this experimental validation of both DWARF and our
stimators, we have selected a noncentrosymmetric con-
guration, composed of three subapertures in an equilat-
ral configuration with a dilution of 1.62. The configura-
ion is therefore compact. FUSCHIA was developed
ssuming that the OTF peaks are separated, but as un-
erlined previously at the end of Section 2, the overlaps in
he OTF will be rejected for the moment: Each peak will

(a)

DM

PM

(b)

(c)

ig. 9. Bench stability: (a) PSFs obtained with the planar (top)
nd deformable mirror (bottom), with the corresponding tempo-
al evolution (b) and (c).
e reduced to the largest disk inscribed in the integration
omain, so that the Zk modes calculated on this field re-
ain mutually orthogonal.
As FUSCHIA is a closed-loop estimator, the following

rocedures are used to reach an initial nearly cophased
tate where residual pistons and tips/tilts are lower than
� rad. While the tips/tilts are uncorrected, NT distinct
SFs are visible on the detector, each PSF corresponding

o a subaperture. Precisely superimposing all PSFs di-
ectly allows to reduce all differential tips/tilts below
� rad. Then by slowly increasing or decreasing the opti-
al path difference associated with each subaperture, we
an scan for fringes. When fringes are obtained, a conven-
ional algorithm is used to find the central fringe by maxi-
izing the peak modulus in the OTF. Once this fringe is

ecured, FUSCHIA can be used. Note that in the general
ase where pistons and tips/tilts fluctuate simultaneously,
ringe scanning as described may become difficult, and
ore robust algorithms are recommended.
For all the tests presented in this section, we record

mall images of size 64�64 pixels at �c=650 nm, with re-
pect to the Shannon–Nyquist sampling of the images at
he focal plane. Two kinds of tests are performed:

• For the linearity test, we apply a sequence of 31 val-
es of a single Zernike mode, piston or tilt, acquiring im-
ges at hight flux (6�105 photo-electrons). Because dif-
raction is chromatic, focal-plane images are affected by
he bandwidth, whereas our model is monochromatic; the
pectral band is then an important parameter to opti-
ize. We thus perform several acquisitions, for the refer-

nce point source illuminated with the arc lamp and dif-
erent spectral filters of width 10 nm (so-called F1), 40 nm
F2�, and 80 nm �F3� centered on �c.

• In the case of the repeatability test, increasing fluxes
re considered, ranging from 1.5�104 photo-electrons per
mage �SNR=3� to 1.4�106 photo-electrons �SNR=82�.
or each level, a data set of 90 images is acquired using

he arc lamp and the F2 filter. Since its flux is constant,
he luminosity is changed by adjusting the exposure time,
overing the whole possible dynamic range of the camera.
e use the planar mirror, ensuring that we are near the

ero optical path difference (OPD) and avoiding mechani-
al noise introduced by the piezo-electric platforms of the
eformable mirror.
For each test, we first acquire a reference image with-

ut phase perturbation to estimate the numerical pupil.
hen, aberrations are introduced and retrieved using
oth the iterative and the analytic estimators.

. Validation of Piston Estimators

. Linearity
o check the correct behavior of our phase-retrieval esti-
ators, we first consider linearity tests, applying at high
ux �SNR70� a 30-point piston ramp of �−500 nm,
500 nm� on a given subaperture with the BRISE deform-
ble mirror; some of the corresponding images are shown
ig. 10(a). Figure 10(b) presents, for the mobile subaper-

ure, the piston estimated with the analytic algorithm
USCHIA using the three filters. We note that near
oughly −�c /2 and +�c /2, wrapping occurs due to the in-
rinsic modulo 2� dynamic range of the estimator. Be-
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ween these two wrappings, the linearity is excellent,
ith the slope coefficients close to 1 for each spectral band

0.91 for F3, 0.96 for F1 and F2). The smallest error is ob-
ained with F1: It is equal to 8 nm, whereas it is equal to
1 nm and 10 nm for F2 and F3, respectively. But with a
mall band, the number of photons collected is less impor-
ant, and consequently the repeatability will decrease.
here is thus an optimal bandwidth, resulting from a
ompromise between accuracy and repeatability; we chose
he 40-nm-width filter for the next tests. However, we un-
erline that piston cophasing on large spectral band
80 nm at 650 nm, i.e., ��=� /8) is possible with our

(a)

(b)

(c)
ig. 10. Linearity of piston estimators: (a) PSFs obtained dur-

ng a piston scan, from −�c to −�c /2; (b) piston estimated with
USCHIA for different bandwidths; (c) comparison between
USCHIA and the iterative algorithm for the 40 nm bandwidth.
c

onochromatic model. For much wider bandwidth,
ophasing operation is possible by explicitly modeling the
hromatic dependence [38].

Figure 10(c) shows the piston linearity obtained with
he two focal-plane estimators, selecting the images ob-
ained with the 40 nm bandwidth. In each case the piston
s quite well reconstructed with slope coefficients close to

(0.96 for FUSCHIA, 0.99 for the iterative algorithm) as
pecified, since no approximation is made for piston. Real-
ime correction is thus possible in closed loop.

. Repeatability
igure 11 presents the piston repeatability for different

evels of source brightness. For each data set, the stan-
ard deviation of estimated piston is plotted versus the
ux N in photo-electrons per image, after the global pis-
on has been removed. First, we note that FUSCHIA and
he iterative algorithm give identical results as expected.
he graph also shows that in the photon-noise regime, the
coefficients of Eq. (35) are 4.5 for both estimators. We

lso note that piston estimation is dominated by the de-
ector noise at the lower flux; the boundary between the
wo regimes lies around 1.5�104 photo-electrons.

With �d=8.5 electrons for DWARF, the number of valid
ixels npix is in reality equivalent to 14�14 pixels, which
eans that SNR=6. Finally, the 0.75 nm repeatability

pecified for DWARF is reached with approximatively 5
105 photo-electrons per image, which correspond to

NR=50.

. Validation of Tilt Estimators

. Linearity
o study the tilt linearity, we apply a 30-point tilt ramp
oing from −250 nm to 250 nm at high flux �SNR70�;
ome of the PSFs obtained during the scan are illustrated
n Fig. 12(a). On Fig. 12(b) we present the tilt estimated
y FUSCHIA for the three spectral filters F1, F2, and F3.
irst, we note that beyond ��c /4�, the tilt is not well recon-
tructed because the three PSFs no longer superimpose.
n the validity domain, results obtained with the different
lters are similar, with a slope coefficient of 1.15 in each

ig. 11. Piston repeatability estimated with FUSCHIA and the
terative algorithm.
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ase. Real-time tilt correction for small aberrations (i.e.,
��c /4�) is thus possible, also with large spectral band
ith ��=�c /8.
Figure 12(c) compares the two focal-plane estimators

omputed on the images acquired with the 40 nm band-
idth. When the amplitude of the perturbation is greater

han �c /4, the iterative algorithm is initialized to the true
berrations in order to avoid local minima; in this case,
ilt estimation is still possible, in contrast to estimation
ade with FUSCHIA: Although the three PSFs no longer

uperimpose, fringes created by the second ring of the
ilted PSF are sufficient to correctly estimate the tip/tilt
ith a slope coefficient of 0.93 for the iterative estimator.

(c)

(b)

(a)

ig. 12. Linearity of tilt estimators: (a) PSFs obtained during a
ilt scan, here illustrated from −�c /3 to +�c /7; (b) tilt estimated
ith FUSCHIA for different bandwidths; (c) comparison between
USCHIA and the iterative algorithm for the 40 nm bandwidth.
. Repeatability
igure 13 presents the standard deviation of estimated

ilt with FUSCHIA and the iterative algorithm. We note
hat in the photon-noise regime, aberrations follow the
/N−0.5 law but with different coefficients: �=2.5 with the

terative algorithm, whereas � is equal to 4.3 using FUS-
HIA. This is due partially to the suboptimal use of FUS-
HIA with a compact pupil: since we reject the outer
arts of the OTF peaks, not all data are entirely used.
Furthermore, there are static aberrations on the refer-

nce mirror, whose values of tilt aberrations lie between
/600 and � /15, and FUSCHIA performance was shown
o degrade as the value of tilt aberration increases.

Nevertheless, tip/tilt sensing at low flux is possible;
ith the iterative estimator, the 1.21 nm repeatability

pecified for DWARF is reached for 3.3�104 photo-
lectrons, which corresponds to a SNR of 11; using FUS-
HIA, it is obtained for 1.6�105 photo-electrons �SNR
27�. As expected, the detector noise dominates under
.4�104 photo-electrons (i.e., SNR�6).

. CONCLUSION AND OPEN ISSUES
he cophasing of a MAOT requires the estimation of the
iston and tip/tilt on each subaperture of its pupil. Focal-
lane approaches, such as phase diversity, now constitute
erious alternatives to pupil-plane methods. Phase diver-
ity, however, is not very much used for cophasing, as it
equires the analysis of two images and its conventional
mplementation is slow due to its iterative nature.

In this paper we have shown that a single focal image
s sufficient for MAOT cophasing as long as the pupil is
onredundant and preferably diluted (even though
lightly compact ones may still be used). Adopting a LS
pproach, we have derived an initial first phase-retrieval
stimator. Based on a conventional iterative gradient-
escent algorithm, its behavior and performance are typi-
al of current focal-plane solutions. Then under the fur-
her assumption of small phases, we have also derived an
nalytical expression of the piston and tip/tilt aberrations
n each subaperture and consequently a second estimator
FUSCHIA). Both algorithms were validated by simula-
ions. Their performance in closed loop are shown to be

ig. 13. Tilt repeatability estimated with FUSCHIA and the it-
rative algorithm.
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xtremely close, and excellent overall (�1.0 nm error on
he piston and tilt estimates for a flux greater 105 photo-
lectrons per pixel). The best use of FUSCHIA is in closed
oop or in open loop for piston estimation in conjunction
ith the iterative estimator for tilt estimation. FUSCHIA

s about 20 times faster than the iterative estimator and
hus particularly suitable for real-time cophasing.

Experimental validations were also carried out on the
NERA laboratory test bench BRISE, a multipurpose test
ed for cophasing sensors. Results show that using FUS-
HIA or the iterative algorithm, piston can be estimated
n spectral band of width � /8 with a subnanometric re-
eatability reached for a SNR of 50. Tilt is reconstructed
s long as the PSFs are superimposed; beyond this do-
ain, FUSCHIA does not work. Between �−� /4 , +� /4�,
anometric performance is obtained for a SNR respec-
ively equal to 27 and 11 for FUSCHIA and the iterative
lgorithm. This demonstrates than an accurate real-time
iston/tip/tilt correction is possible.
A rather simple cophasing sensor, composed of a focus-

ng device, a fast focal-plane detector, and a standard
omputer, can thus be used to cophase a number of paral-
el optical beams with respect to piston and tip/tilt. Such a
imple setup minimizes the number of auxiliary optics
nd thus the need for calibrating the differential paths.
his cophasing sensor can be used near the beam com-
iner of a stellar interferometer, which nowadays typi-
ally includes four to eight subapertures (with adaptive
ptics when required). While designed for the maximum
umber of beams, the sensor can also operate with a
maller number of beams without any hardware change.
nother application is the control of a wide-field MAOT
ith a pupil made of distributed circular subapertures

such as the MAOT described in Mesrine et al. [7]), using
nly the existing focal-plane detector and an unresolved
ource (star or calibration source in the object plane).

Focal-plane cophasing sensors are most probably bound
o become as widely used as pupil-plane ones as they
vercome their initial limitations. In particular, the meth-
ds presented in this paper can be generalized to allow
he treatment of wide-spectral-bandwidth data. New de-
elopments on analytical phase diversity [29] are also a
ery promising alternative for future real-time cophasing
ystems.

PPENDIX A: APPROXIMATED OTF AND
TF EXPRESSIONS FOR SMALL
BERRATIONS

he following is a summary of several of F. Cassaing’s
heoretical results developed in his Ph.D. thesis [39],
hich have been used in the derivation of the FUSCHIA
stimator. They demonstrate the existence of a modal ex-
ression of the OTF that is similar to the expression of
he pupil transmission using Zernike modes.

Equation (4) shows that the OTF is the sum of NT
NT subaperture correlations pn � pn�, with �n ,n�	
�1. . .N �. If � is the phase on the subaperture n, then
T n
�pn � pn���u� = 
u��R2

��u����u� + u�exp j��n�u��

− �n��u� + u��du�. �A1�

et us call S�u� the overlapping area between the subap-
rture n and itself translated by u. The product
�u����u�+u� is null outside this area. For clarity of fur-

her calculations, we will assume this product to be unity
nside S�u� (i.e., transmissions are unity). Note then that
q. (A1) is a sum of phasors. If the subaperture phases �n
nd �n� are small, then this sum can be approximated by
phasor whose phase is 	nn��u�,

nn��u�

= 
u��R2

��u����u� + u���n�u�� − �n��u� + u��du�

= 
u��S�u�

��n�u�� − �n��u� + u��du�, �A2�

nd whose modulus is ��u�:

��u� = �� � ���u� = 
u��R2

��u����u� + u�du�

= 
u��S�u�

1du�. �A3�

his approximation means that the OTF is considered to
e the product of the unperturbed OTF � by a phase func-
ion, while the effects of the aberrations on the OTF
odulus are neglected:

�pn � pn���u� = ��u�exp�j	nn��u��. �A4�

xpanding the phase on Zernike modes as in Eq. (3) leads
o

	nn��u� = 
u��S�u�

�
k=1

3

�aknZk�u�� − akn�Zk�u� + u��du�

�A5�

= 
u��S�u�

�
k=1

3 �akn − akn�

2
�Zk�u�� + Zk�u� + u��

+
akn + akn�

2
�Zk�u�� − Zk�u� + u���du� �A6�

=�
k=1

3

��nn�
k+ Zk

− + �nn�
k− Zk

+��u�, �A7�

here the following notation has been used:

�nn
k± = akn ± akn , �A8�
� �



D
s
e
w
m
Z

O

W
p

I
p
a
t

A
W
u
t
d
g
(
b
C
t

R

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

1014 J. Opt. Soc. Am. A/Vol. 25, No. 5 /May 2008 Baron et al.
Zk
±�u� =

1

2  u��S�u�

�Zk�u�� ± Zk�u� + u��du�. �A9�

ue to the properties of Zernike polynomials, it can be
hown that if the radial order of Zernike polynomial Zk is
ven, then Zk

−=0; and if it is odd, Zk
+=0. Consequently,

e will redefine Zk as the non-null corresponding polyno-
ials and �nn�

k as the corresponding coefficient. Thus, if
k is of even radial order,

Zk = Zk
+, �nn�

k = �nn�
k− . �A10�

therwise, Zk is of odd radial order:

Zk = Zk
−, �nn�

k = �nn�
k+ . �A11�

ith this notation and Eq. (4), the final approximated ex-
ression of the OTF for small aberrations becomes

s 
 �
n=1

NT

�
n�=1

NT

� exp�j�
k=1

3

�nn�
k Zk� � �un−un�

. �A12�

t can be shown that those new modes Z1, Z2, and Z3 are
roportional to the Zernike modes Z1, Z2, and Z3 scaled to
double support. Consequently, Eq. (A12) is very similar

o the expression of the transmission in the pupil plane:

p = �
n=1

NT

� exp�j�
k=1

3

aknZk� � �un
. �A13�
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