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Cophasing a multiple-aperture optical telescope (MAOT) or optical interferometer requires the knowledge of
the tips/tilts and of the differential pistons on its subapertures. In this paper we demonstrate in the case of a
point source object that a single focal-plane image is sufficient for MAOT cophasing. Adopting a least-square
approach allows us to derive an analytic estimator of the subaperture aberrations, provided that these are
small enough (typically for closed-loop operation) and that the pupil is diluted noncentrosymmetric. We then
provide the validation of this estimator by simulations as well as a performance comparison with a more con-
ventional iterative algorithm of phase retrieval. Finally, we present the experimental validation of both esti-
mators on a laboratory test bench; our results, especially subnanometric repeatability, demonstrate that focal-
plane sensors are appropriate for the cophasing of phased array telescopes. © 2008 Optical Society of America
OCIS codes: 010.7350, 100.5070, 110.5100, 100.3190, 120.3180.

1. INTRODUCTION

Multiple-aperture optical telescopes (MAOTSs) are made of
a collection of subapertures, coherently combined in order
to reach the diffraction limit of a single monolithic tele-
scope whose aperture would cover the subapertures.
MAOTs are now currently used for astronomy, to provide
milliarcsecond resolution thanks to ground-based stellar
interferometers with hectometric baselines [1-3]. Similar
instruments are under study for space missions, particu-
larly in the context of the search for exolife [4,5]. MAOTs
can also be considered for wide-field space telescopes,
when the primary is deployed after launch because it does
not fit in the rocket fairing. Examples are the James
Webb Space Telescope for astronomy [6] or multiple-
aperture arrays for Earth observation from a geostation-
ary orbit [7].

Performance of optical instruments can be degraded by
phase perturbations. This is particularly the case of
MAOQOTs, operating at the diffraction limit with very long
baselines or with subpupils that are not mechanically tied
together with optical precision. Perturbations include
quasi-static positioning errors or high-frequency contribu-
tors such as vibrations or propagation through the turbu-
lent atmosphere. To increase the signal-to-noise ratio
(SNR) of the collected data, it is necessary to cophase the
array, i.e., to stabilize optical paths at zero optical path
difference when interferometric data is recorded. As real-
time correction over each subaperture can be performed
with adaptive optics [8], the very specific issue raised by
MAOTs is the correction of the differential piston/tip/tilt
errors between the subapertures, as illustrated by Fig. 1.
Thus the most critical component of an interferometer is
the cophasing sensor, the goal of which is to measure
those modes.
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Many correction devices can be considered, such as tip/
tilt mirrors and delay lines in each arm, or a global de-
formable mirror. An obvious solution is to use a dedicated
tip/tilt sensor for each subaperture and a classical inter-
ferometric (pairwise) piston sensor. But the complexity of
this solution quickly increases with the number of subap-
ertures, and the local tip/tilt measurements must be
linked together.

Another solution is to retrieve aberrations from focal-
plane intensity measurements, an old idea first intro-
duced by Gerchberg and Saxton [9] in the electron micros-
copy context and then rediscovered by Gonsalves [10].

Phase retrieval estimators use a single focal-plane im-
age of an unresolved source observed through the instru-
ment to reconstruct the aberrated phase, coded in the pu-
pil transmittance. Analytic expression of the phase
solution can be derived in specifically crafted experi-
ments, such as when one has images taken with and
without an exponential filter in the pupil plane [11]. How-
ever, in general, one has to rely on iterative methods to
estimate the aberrations that are most compatible with
the known constraints in the pupil plane and the mea-
sured images. Successful approaches include gradient-
search algorithms [12], where a least-square (LS) crite-
rion is minimized as a function of the unknown
aberrations, and iterative Fourier-transform algorithms
[10,13], where the estimates are Fourier-transformed
back and forth to ensure compatibility with the data.

Phase retrieval has been shown for a centrosymmetric
pupil to lead to a theoretical ambiguity on the sign of the
even part of the phase [10,14,15]. In practice for mono-
lithic instruments, the obscurations can be sufficiently
asymmetric to allow phase retrieval to be used. Such is
the particular case of the Hubble telescope: The telescope
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Fig. 1. Piston and tip/tilt on a MAOT.

being already in orbit, its aberrations were characterized
with the blurred images of unresolved stars [16,17].

In the most general case (unknown object or any pupil
configuration), it is possible to remove the sign ambiguity
by using at least a second image differing by a known
phase, conventionally a small defocus [18]. This phase-
diversity method is usually applied for the phase mea-
surement on extended objects (see Mugnier et al. [19] for
a recent review of phase diversity). Aberration measure-
ment by phase diversity is now routinely used for the cali-
bration of monolithic instruments [20] and has been ex-
tended to MAOTs [21-23]. While phase diversity is
optically very easy to implement, it requires considerable
computing power for real-time correction, as it is most of-
ten based on an iterative algorithm. Efforts in making
phase diversity faster have thus been made: better nu-
merical algorithms [24,25], modified error metric used to
estimate the aberrations and object from the data
[26—28], and the promising research of an analytical solu-
tion [29].

For a point source object however, one does not need
the full generality of the phase diversity. The simpler
phase retrieval can be used with a noncentrosymmetric
aperture to retrieve the aberrated phase without ambigu-
ity. Since MAOT pupils may be noncentrosymmetric,
phase retrieval becomes an interesting solution, as the
image of an unresolved source is often available. This
source can be an off-axis star or an internal source and
can be used for real-time cophasing or as a complemen-
tary tool for periodic calibration.

The objective of this paper is to present two focal-plane
wavefront estimators, which determine simultaneously
the pistons/tips/tilts on all the subapertures of a MAOT
with a noncentrosymmetric pupil from the sole focal-
plane image of an unresolved source. In Section 2, the im-
age formation process is described in Fourier space, lead-
ing to the derivation of the aberrated optical transfer
function (OTF). In Section 3 a LS analysis is adopted for
its good statistical properties [30], and a first conven-
tional estimator is recalled, based on an iterative algo-
rithm. In the case of a diluted nonredundant pupil and
when subaperture aberrations are small, a second estima-
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tor requiring only a single Fourier transform—and thus
particularly suited for real time cophasing—is derived.
The theoretical performance of both estimators is then
analyzed by simulations in Section 4. Finally, an experi-
mental validation on the ONERA laboratory test bench
BRISE allows us to compare in Section 5 the algorithms
on experimental data for the DarWin [31] AstRonomical
Fringe sensor (DWARF) validation.

2. EFFECT OF ABERRATIONS ON THE
IMAGE OF AN UNRESOLVED SOURCE

A. Direct Model

The following model assumes monochromatic light and
point source objects, although most of the calculations
could be extended to known or centrosymmetric objects
and to wide wavebands. The image i recorded by a detec-
tor is then simply the sampled point-spread function
(PSF) corrupted by noise.

To simplify notation, the MAOT pupil is assumed to be
formed by Ny circular subapertures of identical diameters
(Fig. 1). To implement a phase-retrieval algorithm the pu-
pil has to be sampled, and the coordinate choice we make
is such that the PSF computed from the sampled pupil
matches the experimental PSF. This fixes the scaling fac-
tor of the pupil and in practice the radius R (in pixels) of
each subaperture.

Each subaperture n is also characterized by the coordi-
nate of its center u, and by its complex transmission p,,.
The total pupil transmission can then be written as

Np
P=2Pu* b, (1)
n=1

where c‘)‘un denotes a shift by the vector w,,.

An extensive treatment of the problem would require
the use of a different transmission function for each sub-
aperture, which would allow us to take the obscurations
(secondary mirrors, spiders) into account. However, for
clarity of exposition, all obscurations will be neglected in
the following and all transmissions will be assumed equal
to unity. The modulus of the subaperture transmission p,,
is then described by the disk function II:

1 forO<|u|<=R
()= 0 elsewhere ’ 2)

The phase of p, is expanded on a local basis of scaled
Zernike polynomials [32] so that

k

p,(u) =1l(u)exp [j > aknzk(u)] , (3)

k=1

where j2=-1 and a;,, is the rms amplitude in radians of
the mode of order & on the subaperture n. As all apertures
have the same radius, they share the same modes. Since
the MAOT-specific aberrations are pistons (k=1) and tips/
tilts (k={2,3}), we will consider kp,,,=3.
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B. OTF Characteristics
The autocorrelation s of the pupil is given by

sw=popw= > pupwm+u), (4)

u' eR2

and s will be called for convenience the OTF, although it
is not normalized and even though the considered optical
system does not need to be shift invariant. If we express
explicitly the OTF as a function of the subaperture trans-
missions, we get

Ny Np

s=> > (p,* Su,) ® (P * 8y )
n=1p'-1
Np Np

= E 2 (pn ®pn’) * 5un—unr' (5)

n=1p,r-1

Equation (5) demonstrates that the OTF is composed of a
central peak (the zero-frequency peak) surrounded by
Np(Np-1) satellite peaks. Each pair of subapertures de-
fines one baseline, to which correspond two symmetric
peaks in the OTF. Figure 2 (top row) shows, for example,
the real OTF obtained from a pupil in an equilateral-
triangle layout and without aberrations. In presence of
aberrations, the peaks are complex, but as the PSF is
real, the OTF has Hermitian symmetry.

From Eq. (5) and Eq. (3) it is clear that the OTF is non-
linear with respect to the {a.,} coefficients, which ex-
plains the difficulty of the phase-retrieval problem.

Two aberration estimators will be derived in the follow-
ing. For one of these, one of the main assumptions will be
that all considered phases are small compared with
27 rad. This will allow us to simplify this nonlinear prob-
lem. The small phase assumption is a realistic case for a
cophasing sensor mostly used in closed loop. However, ad-
ditional procedures may first be required to lock the sys-
tem, i.e., to achieve a nearly cophased state (see the re-
lated discussion in Subsection 5.D).

Aberration OTF modulng OTF phase

y

Fig. 2. Shapes of the OTF modulus and phase for no aberration
(first row), a piston (second row), a tilt (third row) on one
aperture.
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Under the assumption of small phases, it is demon-
strated in Appendix A that

Np Np

3
s=2 > Aexp(j afin,zk> * 8y w,n  (6)
1

n=1,_1 k=

where A £I1®I1 is the autocorrelation of the subaperture,
which describes an OTF peak without aberration, and
where by definition

k
Ay By, + 6ag,, (7

1
Z(u) = Ef J {Z,u') - gZ,(u' +u)idu’, (8)
u' eS(u)

where S(u) is the overlapping area between a subaper-
ture and itself translated by u, and with ¢,=1 if the radial
order of Z;, is odd, and ¢,=-1 if it is even.

Equation (6) allows us to understand the behavior of
the OTF modulus and phase. When all subaperture aber-
rations are null, the phase of the OTF, called the phase
transfer function (PTF), is null (Fig. 2, top row). In the
presence of aberrations, the OTF modulus is not affected
at first order; only the PTF is.

The shape of the perturbation in the PTF is then deter-
mined by the Z;, modes. Fig. 2 (center and bottom rows)
presents the effects of simple aberrations in the pupil.
When a piston (Fig. 2, center) or a tilt (Fig. 2, right) are
applied to a single subaperture, 2(Ny-1) satellite peaks
are affected. If these peaks do not overlap (see further on
for a discussion on this), the OTF modulus is strictly un-
affected in the piston case and barely changes in the tilt
case. In the PTF a piston aberration creates phase offsets,
while a tilt aberration creates phase planes. Equation (8)
confirms that the first three PTF modes, the Z, modes,
are similar to Zernike modes, Z;, but with a double sup-
port. Thus the first Z;, modes are mutually orthogonal,
which means piston measurements do not interfere with
tip/tilt ones.

The amplitude of the perturbation in the PTF is mea-
sured by the coefficients aﬁ .- For a piston (a mode of even
radial order), it is equal to the differential aberration am-
plitudes between the two considered subapertures. Con-
sequently, the piston amplitudes are antisymmetric; i.e.,
symmetric peaks are affected by opposite amplitudes. In
contrast, for a tip or tilt (modes of odd radial order), the
amplitudes of the modes are symmetric. Both peaks are
affected by the same amplitude, equal to the total of the
subaperture aberration amplitudes.

Thus, as long as the OTF peaks do not overlap, Eq. (7)
indicates that the phase of a satellite peak nn’ and of its
symmetric counterpart n’'n is determined entirely by the
aberrations on the two subapertures n and n’ (whose in-
tercorrelation forms the peak). The phase of the peaks
formed by the intercorrelation of the subaperture n or n’
with another subaperture will also depend on one of these
aberration sets, but not on both. To disentangle the two
intricated sets on the peak nn’, a natural idea is to check
whether any kind of linear combination of the afm, can al-
low us to retrieve all the aberrations.

This kind of approach requires the OTF peaks not to
overlap, and consequently we will restrict the following
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sections to pupils with nonoverlapping peaks (cases of
peak overlapping will be discussed in Subsection 3.B.4).

3. LEAST-SQUARE ESTIMATORS

The next subsections establish the construction of two ab-
erration estimators based on a LS approach. They allow
us to retrieve all aberrations on every subaperture from
one single focal image. The first estimator is a well-known
[21] iterative algorithm normally based on a two-image
analysis, which we will further demonstrate to work with
only one image. It will also serve as a reference in simu-
lations. The second estimator is our analytical estimator
FUSCHIA (Fast Unambiguous Sensor for CopHasing In-
terferometric Arrays).

Both estimators use the classic LS criterion L, propor-
tional to the squared difference between the discrete Fou-
rier transform (noted by a tilde) of the image and the
OTF. In the following the noise on the image will be as-
sumed white. If it is also additive and of Gaussian distri-
bution, then the LS approach is equivalent to a
maximum-likelihood approach. Otherwise, for other types
of noise, the LS criterion still allows one to minimize the
distance between those quantities. The criterion is writ-
ten as

1 _
Lia)= > ﬁs(a,u)—i(u)ﬁ, (9)

ueD

where a is the aberration vector and o2 is the variance of
the noise on the image. The sum is computed on the sup-
port of the OTF, the frequency domain D (bounded by the
OTF cutoff frequency).

The vector a of the estimated aberrations contains the
aberrations that are solutions of the phase-retrieval prob-
lem, defined as the aberrations that minimize L:

Y (k,n)

2, (a)=0. (10)

If the real and imaginary part operators are respectively
noted R and J, then the classic expression [22] of the cri-
terion gradient with respect to the a,, coefficient is ex-
pressed as

JdL 1 _ J8*
== > Ry (s-1)

(9akn 02 ueD aakn

(11)

A. Tterative Estimator

Using Eq. (11), the criterion can be effectively minimized
by a gradient-based iterative method, such as the
conjugated-gradient method.

A brief overview of the procedure is given here. The ini-
tial data are the focal image, the geometry of the input
pupil, and a starting point of the aberration estimates. At
each iteration, the current image is computed from the
point source and the current phase estimates. The algo-
rithm modifies the aberrations so as to decrease the gra-
dients; then these aberrations become the current phase
estimates. This process is repeated until the gradient val-
ues drop below a user-defined threshold. Iterative algo-
rithms require several (typically 10-30) iterations to con-
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verge to the final aberrations, each iteration representing
2 fast Fourier transforms (FFTs) to compute. This estima-
tor has been successfully implemented, and while its per-
formance is excellent (see Section 4) as it achieves optimal
data reconstruction in the LS sense, it inconveniently re-
quires many FFTs to do so.

B. Proposed Analytical Estimator

In this section, we will use the small-phase approxima-
tion of the OTF from Eq. (5), in order to obtain an estima-
tor based on an analytical formulation. This estimator
uses much less processing power than the iterative algo-
rithm previously described.

1. Gradient and LS Criterion in Small Phases

Let Dy be the support of the OTF central peak. We will
split the computation of the criterion in Eq. (9) into two
parts: one computed over Dy and the other over the rest of
the frequencies (D \ Dy). The central peak contains mixed
information on only the incoherent images of all subaper-
tures, while the useful interferometric information re-
sides within the high-frequency satellite peaks. To keep
the following calculations in this paper tractable, the part
of the criterion computed on the central peak will be dis-
missed. The new criterion L’ is then

1

L'(a)= %D §|s(a,u) -im). (12)

Note that the minimization of L’ is sufficient to derive all
useful information for MAOT cophasing, i.e., information
about the individual aberrations on the subapertures.
The gradient to minimize with respect to a,, is

oL" 1 _ Js*
== > M{(s-1)

aakn UzueD\Do aakn

(13)

Equation (13) shows that the gradient of the criterion de-
pends on the gradient of the conjugated OTF. The fre-
quencies at which the OTF is constant with respect to a,,
do not contribute to the gradient of the criterion. Thus to
compute the right-hand term of Eq. (13) we need only ex-
press sy, defined as the part of the OTF that depends on
this coefficient a,,. As Eq. (6) demonstrates, s;, is a sum
of (Np—1) pairs of peaks:

Np 3
Sk, = 2 Aexp(jz afm,zk,> *5",:””'

n'=1 k'=1

n'#n
3

+ Aexp<j2 af;,nzk,) * 8y o (- (14)
k=1

Then the gradient of s* with respect to the a,,, coefficient
is
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Js* Nr 3

. . k'

=—j 2 \| Zhexp( - o, By | | * 80 u,

aakn n'=1 B'=1

n'#n

3
+ [ekaA exp(—jz aﬁ,nZk,,>1 * Oy, u, (> (15)
B'=1

with €,=1if Z,, is of odd radial order and €,=-1 otherwise
because of Eq. (7).

Let us call D,,,,» the support of the frequency peak cor-
responding to the baseline vector nn'. As the pupil con-
figuration is diluted and nonredundant, the product of the
OTF by its conjugated derivative is nonzero only on D,/
and D,,,, domains. Moreover, this product is imaginary as
the exponential terms simplify:

(9 * NT
S
S =—j 2 (BN * 8y u  + GEAT X Oy Ly ).
ﬁakn n'=1
n'#n

(16)

As the real part of this expression is null, Eq. (13) be-
comes

oL’ 1 _ Js*
- > Riw)

(o7 UzueD\DO I,

(u) (. (17)

The aberrations solution verifies the equation

’

V(k,n), (ag,) =0. (18)

Qkn

Then we explicitly express the gradient as in Eq. (15):

Np 3
~F . &
> NiX | Zhexp|-iX @By || * Ouu,
ueD\Dy n'=1 k'=1
n'#n

3
+ EkaA exp —JE ai;,zku * 5,‘”,_“” (u) =0.
k"=1

(19)

Using the Hermitian symmetry of Z, the centrosymmetry
of Z,, and the sign of ¢, it can be shown that the second
term of the sum is equal to the first one. As a conse-
quence, only half the peaks need to be considered when
looking for the estimates, and we have

,

Np 3
vn, 2 J 22 Z,A exp —jE
n'=1

uecD\D, k=1
\ n'#n
a
Xann,Zkr * 5un_un’ (u) =0. (20)
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The following two sections distinguish the specific case
where pistons are the only aberrations on the subaper-
tures from the more general case of pistons mixed with
tip/tilts. In both cases we will show that the subaperture
aberration a,, can be retrieved from the sum ﬁf, defined
by

Np
l;fl= 2 afm’ (21)
n'=1

n'#n

and from the average aberration aj, over the subaper-
tures:

1 Mr
=— ’. 22
ay, NTEzlakn (22)

2. FUSCHIA for the Piston-Only Case
Let us consider the case when aberrations are only pis-

tons. Using Eq. (7), Eq. (21), and Eq. (22) with ¢,=-1, 8
is

By =Nrlay, - ay). (23)
Then the aberration ay,, is
a;,=a+ Brlz/NT (24)

While a; is unknown and cannot be determined, this is
not a problem for the purpose of MAOT cophasing, as the
knowledge of a global piston is not relevant. In practice,
a; is arbitrarily fixed at a convenient value, generally
Zero.

To retrieve the aberration aq,, ,8,1L has to be computed.
This will be done by computing the coefficients arlm, using
Eq. (20). Note that as Eq. (6) and Eq. (15) are exact, Eq.
(20) is. It is also further simplified as the function Z; is
real, constant, and equal to unity. When aberrations are
only pistons, Eq. (20) then simply becomes

Np
vn, E J{exp(—j;};) 2 f(u)A(u—un+un,)} =0.

n'=1 ueD,,

n'#n

(25)

As all D,,,, are nonoverlapping frequency domains, this
means the sum is null at all frequencies if and only if all
its terms are

Vn,Vn'#n Arg[exp(—j;};,) 2 i(u)

ueD,,

XA(u—un+unr)}=0 [mod 7], (26)

which becomes

Vn,Vn' #n —&};,+Arg[ E i)

ueD,,

xA(u—un+un,)]=O [mod 7]. (27)

Using the result of Eq. (24), a4, is finally given by
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ueD,,

1 Nr _
dn=m 3 Arg[ S iw)
n'=1
n'#n

XA(u—un+unr)] [mod 27]. (28)

In Eq. (28), only the modulo 27 solutions are kept since
the other solutions of Eq. (18) correspond to maxima of

the L’ criterion when s and i are phase opposite, as dem-
onstrated by Eq. (12). Therefore, there is only a single so-
lution in the nonambiguous piston range |-, ] for the
piston on each subaperture n, explicitly given as a func-
tion of the image. Let us recall that i is the image of an

unresolved source, so i is very close to the OTF s. Thus
the physical meaning of Eq. (28) is that the phase is ex-
tracted from each OTF peak with a weighting factor equal
to the modulus A of an unaberrated peak. This means in
particular a higher phase contribution near the center of
the peak, where the signal-to-noise ratio is higher.

3. FUSCHIA for Mixed Pistons and Tilts
With aberrations other than pistons, the phase terms

within the exponential of Eq. (20) vary over D,, . For
small aberrations however, the exponential can be ex-
panded into a Taylor series. Equation (6) shows that the
modulus of Z on each peak is equal to A on the first order.

Let @ be the phase of i. Then Eq. (20) becomes

Np
Vo, > > NIAZ)u-u,+u,)

n'=1 W€Dy,

n'#n
3
x| 1+jd@)-j > & Zyw-u,+u,) | =0,
k=1
(29)
which simplifies into
Ny
Vo, > > O@[A’ZJu-u,+u,)
n'=1 W€Dy,
n'#n
Ny 3
= E Aﬁn,|: E [AQZka/](u—un+un/) .
n'=1 k'=1 ueDyy,
n'#n
(30)

The integral of A2Z, 2, on each frequency domain D,
is independent of n or n’. Even with the A? weighting,
2., 2,, Z, is still an orthogonal basis, so that A2Z, 2, is
nonzero if and only if 2’ =k. Thus Eq. (30) allows us to es-
timate ,Bfl, defined in Eq. (21), as
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<
E
=)

I
Mz
s
§\

O
L

ﬂ»\ll
=

Np
> D e@IAZ)u-u,+u,)
uEDnnr

'=1

n'=
__n'#n
=~ Ny
> 2 NZ@-u,+u,)
n'=1 WeDpy!
n'#n

(31)

From ,85‘1 the pistons can be retrieved as described Subsec-
tion 3.B.2. Since the tips or tilts are Zernike modes of odd
radial order, Eq. (7) implies that

Bt = (Nyp-2)ay, + Nray,. (32)

To compute a;, we perform a closure by summing all :Bfu on
all apertures n':

Np
> B =2Ny(Np-1)ay. (33)

n'=1

Finally, the aberration £ on the subaperture n is given by

B 1 Nr
G > A (34)

“Np-2 20Np-1D)WNp-2) <

Equations (31) and (34) allow us to retrieve all tip/tilt ab-
errations on each subaperture without ambiguity. One of
FUSCHIA’s major strengths resides in the fact that Eqgs.
(28), (34), and (31) require the computation of only one
FF'T to retrieve both the pistons and the tips/tilts. Conse-
quently FUSCHIA brings a major speed improvement
over the iterative solution, being on average 20 times
faster.

Equation (34) is defined only if Ny= 3. This may seem a
rather surprising result since Ny=2 allows one to mea-
sure piston, as demonstrated by Eq. (24) and well estab-
lished with the Young setup. This results from the fact
that for Np=2 the pupil is centrosymmetric, and so the
even part of the phase cannot be retrieved. This raises no
problem for piston, as the average piston (even mode) is
already known to be not seen and thus is not solved for.
But the differential piston (odd mode) can be correctly es-
timated. A similar situation occurs for tip/tilt, which can
be better illustrated from the focal-plane data: If a similar
tip/tilt is applied on both apertures, then both PSF's shift
by the same amount, leading to a global linear phase in
the OTF argument. But if opposite tips/tilts are applied,
then two identical separated PSF's are observed. It is pos-
sible to derive the absolute value of the tip/tilt from the
distance between the two PSFs. More precisely, this mea-
surement involves only the OTF modulus, since the image
is also centrosymmetric and thus the phase of the OTF is
zero. But it is not possible to guess to which aperture be-
longs each PSF from the sole focal-plane image and thus
to estimate the tip/tilt sign. The first example shows that
the average tip/tilt (coefficient a/]f;,k e{1,2} in Appendix
A) can be estimated, since it is linked to an odd mode, and



1006 J. Opt. Soc. Am. A/Vol. 25, No. 5/May 2008

the second example confirms that the sign of the differen-
tial tilt (coefficient o/ﬁ ,k €{1,2}) cannot be estimated, be-
cause the differential tip/tilt is an even mode. The full
measurement was possible in the first example because
there was no differential tip/tilt. Since the general case is
a combination of average and differential tips/tilts, the
lack of the differential estimation prevents us from esti-
mating the individual tips/tilts.

4. Case of Compact Pupil Configurations

So far we have assumed that the peaks in the OTF do not
overlap. This restriction means in practice that some spa-
tial frequencies will be missed by the MAOT, which is bad
for instantaneous imaging of extended objects. However,
the instrument may take advantage of aperture synthesis
by rotation to complete its frequency coverage. Many in-
terferometers are also not designed primarily for direct
imaging purposes and rely on image reconstruction soft-
ware.

In practice, however, one may have to work with an in-
strument whose pupil configuration has its OTF peaks
overlapping. This may arise in two cases. The first case is
when the pupil is redundant. More than one pair of aper-
tures then form an identical baseline, thus contributing to
the exact same spatial frequency peak. The phases cannot
then be easily disentangled (FUSCHIA would not be
used). The second case is when peaks overlap but not to-
tally. This happens in particular for compact pupil con-
figurations meant for imaging, whose OTFs do not reach
zero inside defined frequency domains of interest. As
FUSCHIA is dedicated to cophasing or fringe-tracking in-
struments and is not directly used for science measure-
ments, the pupil can sometimes be optically remapped
into a diluted pupil. If not, it may still be possible to use
FUSCHIA, though not optimally. If the peak overlap
takes place in the outer periphery of the peaks, then the
central unambiguous part of the peaks can be extracted
and used with success in place of the whole peaks. Our
experimental data in Section 5 were in fact processed
with this procedure.

4. NUMERICAL VALIDATIONS

In this section are presented the results of simulations
comparing both LS estimators (FUSCHIA and the itera-
tive retrieval method). The typical performance in closed
and open loop is analyzed, as well as the algorithm linear-
ity when confronted by piston and tip/tilt ramps.

A. Conditions of Simulations

A complete simulation environment has been developed to
validate and to compare both estimators. It is able to com-
pute the focal-plane image of any observed object viewed
through an interferometric instrument of a given input
pupil.

All simulations are performed with a wavelength \ of
650 nm. The object is a point source, while the chosen pu-
pil, shown on Fig. 2, is an equilateral triangle. The dilu-
tion factor, defined as the shortest baseline divided by the
subaperture diameter, is chosen equal to 2 (the minimum
dilution for such a diluted pupil). This choice reflects a
compromise between the need to have a diluted pupil for
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the analytical algorithm to work optimally and maintain-
ing a decent spatial frequency coverage.

Images with 64 X 64 pixels are simulated at increasing
fluxes. As the object is a point source, most of the flux is
concentrated on a small zone of the image. Only this zone
of interest (typically 14 X 14 pixels) is used for analysis.
The total flux per frame ranges from 102 to 107 photoelec-
trons. Photon noise is added, as well as a typical read-out
noise of standard deviation o4;=10.0 electrons per pixel.
One hundred images are simulated for every flux, each
one corresponding to a different noise outcome. Both esti-
mators are fed these images as well as the input pupil.
Note that as the iterative estimator is meant to be used
for cophasing purposes, the starting aberrations for its
initialization are chosen null in all cases. The estimator
computes the subaperture aberration estimates. Finally,
the statistical errors (standard deviations and mean er-
rors) are computed for each aberration on each subaper-
ture.

B. Results and Analysis

1. Linearity

The linearity results, obtained from piston and tilt ramps
of [-\,\] with a flux of 10° photoelectrons per frame, are
presented on Fig. 3.

For piston, both estimators behave linearly on the do-
main [-\/2,\/2], with a wrapping of A when the modulus
of the amplitude increases beyond \/2. This is a classical
result for monochromatic piston estimation. On each lin-
ear part the slope for both curves is unity. As no approxi-
mation is realized in the piston-only case, FUSCHIA and
the iterative estimator produce identical results (to ma-
chine precision), as expected. In contrast, in the tilt lin-
earity test, while the iterative estimator is linear on the
whole domain [-\/2,\/2], FUSCHIA remains linear only
on a limited domain that roughly corresponds to [
—0.3\,0.3\]. The main reason for the shape of the plot
outside this domain is not the failure of the small-phase
approximation (though this plays a minor role) but phase
wrapping. The phase of the OTF is indeed explicitly ex-
tracted by a very simple routine (arctangent). As the am-
plitude of the tilt mode across an aperture is 4ay,, when
ap, is greater than A/4, the amplitude exceeds \. The
phase derived by arctangent is then partially wrapped.
The implementation of an unwrapping procedure is
planned for future simulations. Note that the iterative es-
timator does not suffer from this problem, as the phase is
not explicitly extracted by the algorithm. In practice the
domain limitation for the tilt estimation should not con-
stitute a major problem when cophasing an instrument,
as the aberrations to correct should already be smaller
than 0.3\.

FUSCHIA for tilts requires the validity of the small-
phase approximation; thus the slope of FUSCHIA’s curve
within the linear domain is not exactly unity. Figure 3(c)
shows the remaining bias to be smaller than \/80. For a
cophasing system in closed loop this implies only that
more FUSCHIA iterations will be needed to correct the
aberrations. This might, however, constitute an issue in
open loop.
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Fig. 3. Responses of FUSCHIA and of the iterative estimator to
a piston ramp (a) and a tilt ramp (b). The tilt estimation is

slightly biased for FUSCHIA in the linear domain due to the ap-
proximated nature of the algorithm (c).

2. Performance and Comparison of the Two Estimators
Figures 4 and 5 allow us to examine the accuracy (error)
and repeatability (standard deviation) of each estimator
in the absence of aberrations. The performance in such a
case is representative of what could be expected in a
closed loop.

The mean error and the standard deviation curves are
extremely similar, as the bias is very low. Within our flux
range the bias is insignificant (zero) in the piston estima-
tion test, and it remains under 0.1 nm for fluxes higher
than 10 photoelectrons per frame in the tilt estimation
test. The repeatability performance is very good, as the
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Fig. 4. Error and standard deviation on piston estimates for
FUSCHIA and the iterative estimator (no aperture aberrations).

standard deviations are below 1.0nm rms for fluxes
higher than 2 X 10* photoelectrons per frame in the piston
case and 10° photoelectrons per frame in the tilt case.

The shape of the standard deviation curves is typical of
this type of phase estimation. Within the flux range of
[102,107] photoelectrons per frame chosen for our figures,
the standard deviation o (in nanometers) theoretically
follows the equation [33]:

Y

A
— (35)
27 SNR 3

where the vy coefficient is a constant coefficient expressed
in radians measuring the global performance of the algo-
rithm, np;, the number of pixels per frame (here 14 X 14),
and SNR is the signal-to-noise-ratio per pixel defined by

S N/npix ( )
NR= —x—, 36
\N fi npix + 0'2
with N the total flux per frame in photoelectrons. The
relative importance of the parameters N/n;; and oy de-
termines the regime of the estimator. When the flux is
lower than 1.3 X 10* photoelectrons per frame, the noise is
dominated by the detector noise and o is proportional to
1/N. For fluxes higher than 1.3 X 10* photoelectrons per
frame, the Poissonnian photon noise becomes dominant
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FUSCHIA and the iterative estimator (no aperture aberrations).

and o is proportional to 1/ \N This change of slope from 1
to 1/2 is especially visible on Fig. 4(b). The vy coefficients
derived in the photon regime range are identical for the
two estimators, about 1.3 rad on the piston curves and
2.6 rad on the tilt ones. These results prove that tilt is
generally more difficult to estimate than piston. They also
confirm that the analytical estimator performs similarly
to the iterative one for cophasing purposes. The behavior
of both estimators in open loop is depicted by Fig. 6 (resp.
Fig. 7), which corresponds to simulations done with a pis-
ton (resp. a tilt) of A\/6. On one hand, the piston estima-
tions are nearly unchanged, and the y coefficient remains
at 1.3 for both estimators.

On the other hand, the tilt results show a strong dis-
crepancy between the estimators. As underlined previ-
ously in the linearity test, the bias of the analytical esti-
mator is not zero in open loop. Figure 7(c) shows that as
the flux increases, the bias of the analytical estimator
reaches a plateau at 1.0 nm. This results in a nearly con-
stant mean error of about 2 nm for fluxes higher than 2
X 10* photoelectrons per frame. The error of the iterative
estimator, however, behaves as in the previous case, going
as low as 0.01 nm at 107 photoelectrons per frame. The re-
peatabilities are indeed still very good for both estima-
tors, as the vy coefficient for the tilt curve is 2.2 for the it-
erative estimator, though it goes up to about 3.3 for
FUSCHIA.
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Thus, overall, the iterative estimator is more adapted
to open-loop systems, while FUSCHIA is particularly
suited to closed-loop ones.

5. EXPERIMENTAL VALIDATION

A. BRISE Bench

In order to evaluate the performance of focal-plane
cophasing sensors, ONERA has built a multipurpose
bench called BRISE [34,35] (Banc Reconfigurable
d’Imagerie sur Scénes Etendues). It includes mainly a
segmented mirror that can introduce calibrated piston/
tip/tilt aberrations, a focal-plane sensor, and both an ex-
tended scene and a reference point source.

The experimental validation of the iterative and the
FUSCHIA estimators was done with the BRISE internal
wavefront sensor and with DARWIN’s fringe sensor
breadboard, DWARF, installed on the bench [DARWIN is
a future European Space Agency (ESA) mission dedicated
to the search for life signs on Earthlike planets]. The con-
cept, selected by ONERA, is based on a combination tele-
scope that focuses the three beams of the instrument on a
focal-plane camera. Differential piston and tip/tilt are es-
timated with phase retrieval algorithms. The breadboard
we used on the bench was developed for ESA by Kayser-
Threde/ONERA/Alcatel Alenia Space [36,37]. In Subsec-



Baron et al.

Tilt error (100 images)

1000.00F 7 T T E
fe  + + Iterative
[ OFUSCHIA ]
100.00 F * E
g [0 O @) E|
x t @ ]
€ 10.00 ¢ O E
£ E + O 00 o0 oF
. : ]
5 1.00 * E
5 : + :
E — * —
0.10F +7
0.01 I I I I I I I ]
10? 10° 10 10° 10° 107
Flux (photo—electrons per image)
(a)
Tilt repeatability (100 images)
1000007 ‘ ‘ ‘ ‘
F+  + + lterative
[ O FUSCHIA ]
R law in 1/N
’g\ 100.00 E N law in 1/V(N) E
o [ - 1
c o O O @ 7]
< 10.00 ¢ ' E
Z i . E
5 — e ]
5 1.00F Q*Q 9
2 : o
© I LS d
O E T
0 WOE F
0,0W’wm\ P o OO R RN R
10? 10° 10* 10° 10° 10’
Flux (photo—electrons per image)
Tilt accuracy (100 images)
T T T T

100.000 7

+—+ lterative
€] OFUSCHIA

10.000
1.000

0.100E

Total bias (nm RMS)

0.010¢

0.001 I I I I I I | ]
10° 10° 10* 10° 10° 107
Flux (photo—electrons per image)

(©)

Fig. 7. Error, standard deviation, and bias on tilt estimates for
FUSCHIA and the iterative estimator (aperture aberrations of
\/6).

tions 5.B and 5.D we present critical steps for the test-bed
calibration before we detail in Subsections 5.E and 5.F
the experimental results obtained with DWARF on
BRISE.

B. Accordance between the Numerical and the Physical
Models

The direct model allows image simulation from the known
experimental parameters (object, pupil configuration,
wavelength, etc). It is used to model the experiment, par-
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ticularly to evaluate the influence of the various noises
and experimental parameters on the cophasing sensor
performance. But it is also used in the phase-estimation
algorithms for the resolution of the inverse problem
(phase reconstruction from the image). Therefore, the di-
rect model must be as close as possible to the physical
model; the previously listed parameters must be esti-
mated accurately. Since the most critical parameter is the
numerical pupil, i.e., the 2D support in pixels over which
the Zernike phase screens are applied, it must match the
experimental one. Its estimation at a given wavelength is
made by a LS fit between the experimental OTF derived
from the image i of the nearly unaberrated source and a
theoretical OTF depending on parameters due to align-
ment and sampling defaults.

The numerical pupil can then be used for both image
simulation and aberration estimation. Thus, to verify the
accordance between the direct and experimental models,
we apply a sequence of Zernike mode of interest on a
given subaperture (as illustrated Fig. 8), and we compare
the images obtained by simulation and by experiment.
First, in the first row, images are taken without aberra-
tion. Then, in the second row a piston of \/2 is introduced
on a subaperture, which makes the fringes shift in the di-
rection of this aperture. Last, in the third row, an angular
tilt of 2.44\/D is applied on one aperture, which produces
a PSF shift in the focal plane such that its first dark ring
is tangent to one of the other two superimposed PSFs.
The Young fringes we can see are perpendicular to their
baseline.

C. BRISE Characterization

Another critical issue is the bench stability. Therefore,
special care has been taken to control errors that could
limit the performance. In order to characterize the bench

aberration simulated PSF

o0 . :
o0 .

Fig. 8. Agreement between the experimental (right column) and
the direct model (center column) in response to a given perturba-
tion (left column).

experimental PSF

"
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stability, we studied the temporal evolution of the esti-
mated pistons, using both the deformable mirror and a
planar mirror. The corresponding images are simulta-
neously recorded on the camera, as illustrated on Fig.
9(a). Measurements are made at high flux with an expo-
sure time representative of the BRISE acquisition; esti-
mated aberrations are computed with the FUSCHIA algo-
rithm. Figure 9(b) plots the piston temporal evolution on
the planar mirror; it shows a global tilt oscillation at 2 Hz
with subnanometric amplitude. We can see in Fig. 9(c)
that using the deformable mirror, this oscillation is per-
turbed due to the positioning noise introduced by the mo-
bile mirror platforms, which is less than 3 nm. However,
in each case, there is no temporal drift, even with more
significant exposure time; repeatability tests can be per-
formed. They will be made with the planar mirror, which
corresponds to the operating condition in closed loop
(phase perturbation near zero) and which does not have
positioning noise.

D. Conditions of the Experiment

For this experimental validation of both DWARF and our
estimators, we have selected a noncentrosymmetric con-
figuration, composed of three subapertures in an equilat-
eral configuration with a dilution of 1.62. The configura-
tion is therefore compact. FUSCHIA was developed
assuming that the OTF peaks are separated, but as un-
derlined previously at the end of Section 2, the overlaps in
the OTF will be rejected for the moment: Each peak will
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Fig. 9. Bench stability: (a) PSFs obtained with the planar (top)
and deformable mirror (bottom), with the corresponding tempo-
ral evolution (b) and (c).
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be reduced to the largest disk inscribed in the integration
domain, so that the Z, modes calculated on this field re-
main mutually orthogonal.

As FUSCHIA is a closed-loop estimator, the following
procedures are used to reach an initial nearly cophased
state where residual pistons and tips/tilts are lower than
27 rad. While the tips/tilts are uncorrected, N distinct
PSFs are visible on the detector, each PSF corresponding
to a subaperture. Precisely superimposing all PSFs di-
rectly allows to reduce all differential tips/tilts below
27 rad. Then by slowly increasing or decreasing the opti-
cal path difference associated with each subaperture, we
can scan for fringes. When fringes are obtained, a conven-
tional algorithm is used to find the central fringe by maxi-
mizing the peak modulus in the OTF. Once this fringe is
secured, FUSCHIA can be used. Note that in the general
case where pistons and tips/tilts fluctuate simultaneously,
fringe scanning as described may become difficult, and
more robust algorithms are recommended.

For all the tests presented in this section, we record
small images of size 64 X 64 pixels at \,=650 nm, with re-
spect to the Shannon—Nyquist sampling of the images at
the focal plane. Two kinds of tests are performed:

e For the linearity test, we apply a sequence of 31 val-
ues of a single Zernike mode, piston or tilt, acquiring im-
ages at hight flux (>6 X 10 photo-electrons). Because dif-
fraction is chromatic, focal-plane images are affected by
the bandwidth, whereas our model is monochromatic; the
spectral band is then an important parameter to opti-
mize. We thus perform several acquisitions, for the refer-
ence point source illuminated with the arc lamp and dif-
ferent spectral filters of width 10 nm (so-called F';), 40 nm
(Fy), and 80 nm (F'3) centered on A,.

e In the case of the repeatability test, increasing fluxes
are considered, ranging from 1.5 X 10* photo-electrons per
image (SNR=3) to 1.4x10% photo-electrons (SNR=82).
For each level, a data set of 90 images is acquired using
the arc lamp and the Fy filter. Since its flux is constant,
the luminosity is changed by adjusting the exposure time,
covering the whole possible dynamic range of the camera.
We use the planar mirror, ensuring that we are near the
zero optical path difference (OPD) and avoiding mechani-
cal noise introduced by the piezo-electric platforms of the
deformable mirror.

For each test, we first acquire a reference image with-
out phase perturbation to estimate the numerical pupil.
Then, aberrations are introduced and retrieved using
both the iterative and the analytic estimators.

E. Validation of Piston Estimators

1. Linearity

To check the correct behavior of our phase-retrieval esti-
mators, we first consider linearity tests, applying at high
flux (SNR>70) a 30-point piston ramp of [-500 nm,
+500 nm] on a given subaperture with the BRISE deform-
able mirror; some of the corresponding images are shown
Fig. 10(a). Figure 10(b) presents, for the mobile subaper-
ture, the piston estimated with the analytic algorithm
FUSCHIA using the three filters. We note that near
roughly —\./2 and +\./2, wrapping occurs due to the in-
trinsic modulo 27 dynamic range of the estimator. Be-
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Fig. 10. Linearity of piston estimators: (a) PSFs obtained dur-
ing a piston scan, from -\, to —\./2; (b) piston estimated with
FUSCHIA for different bandwidths; (¢) comparison between
FUSCHIA and the iterative algorithm for the 40 nm bandwidth.

tween these two wrappings, the linearity is excellent,
with the slope coefficients close to 1 for each spectral band
(0.91 for F3, 0.96 for F; and F5). The smallest error is ob-
tained with Fy: It is equal to 8 nm, whereas it is equal to
11 nm and 10 nm for Fy and F3, respectively. But with a
small band, the number of photons collected is less impor-
tant, and consequently the repeatability will decrease.
There is thus an optimal bandwidth, resulting from a
compromise between accuracy and repeatability; we chose
the 40-nm-width filter for the next tests. However, we un-
derline that piston cophasing on large spectral band
(80 nm at 650 nm, i.e., AN=\./8) is possible with our
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monochromatic model. For much wider bandwidth,
cophasing operation is possible by explicitly modeling the
chromatic dependence [38].

Figure 10(c) shows the piston linearity obtained with
the two focal-plane estimators, selecting the images ob-
tained with the 40 nm bandwidth. In each case the piston
is quite well reconstructed with slope coefficients close to
1 (0.96 for FUSCHIA, 0.99 for the iterative algorithm) as
specified, since no approximation is made for piston. Real-
time correction is thus possible in closed loop.

2. Repeatability

Figure 11 presents the piston repeatability for different
levels of source brightness. For each data set, the stan-
dard deviation of estimated piston is plotted versus the
flux N in photo-electrons per image, after the global pis-
ton has been removed. First, we note that FUSCHIA and
the iterative algorithm give identical results as expected.
The graph also shows that in the photon-noise regime, the
v coefficients of Eq. (35) are 4.5 for both estimators. We
also note that piston estimation is dominated by the de-
tector noise at the lower flux; the boundary between the
two regimes lies around 1.5 X 10* photo-electrons.

With o,;=8.5 electrons for DWARF, the number of valid
pixels nyy is in reality equivalent to 14 X 14 pixels, which
means that SNR=6. Finally, the 0.75 nm repeatability
specified for DWARF is reached with approximatively 5
X105 photo-electrons per image, which correspond to
SNR=50.

F. Validation of Tilt Estimators

1. Linearity

To study the tilt linearity, we apply a 30-point tilt ramp
going from —-250 nm to 250 nm at high flux (SNR>70);
some of the PSF's obtained during the scan are illustrated
on Fig. 12(a). On Fig. 12(b) we present the tilt estimated
by FUSCHIA for the three spectral filters F;, Fy, and F.
First, we note that beyond |\./4|, the tilt is not well recon-
structed because the three PSFs no longer superimpose.
In the validity domain, results obtained with the different
filters are similar, with a slope coefficient of 1.15 in each
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Fig. 12. Linearity of tilt estimators: (a) PSF's obtained during a
tilt scan, here illustrated from —-\./3 to +A./7; (b) tilt estimated
with FUSCHIA for different bandwidths; (c) comparison between
FUSCHIA and the iterative algorithm for the 40 nm bandwidth.

case. Real-time tilt correction for small aberrations (i.e.,
<|\./4]) is thus possible, also with large spectral band
with AN=)\./8.

Figure 12(c) compares the two focal-plane estimators
computed on the images acquired with the 40 nm band-
width. When the amplitude of the perturbation is greater
than \./4, the iterative algorithm is initialized to the true
aberrations in order to avoid local minima; in this case,
tilt estimation is still possible, in contrast to estimation
made with FUSCHIA: Although the three PSF's no longer
superimpose, fringes created by the second ring of the
tilted PSF are sufficient to correctly estimate the tip/tilt
with a slope coefficient of 0.93 for the iterative estimator.

Baron et al.

2. Repeatability
Figure 13 presents the standard deviation of estimated
tilt with FUSCHIA and the iterative algorithm. We note
that in the photon-noise regime, aberrations follow the
vIN-%5 law but with different coefficients: y=2.5 with the
iterative algorithm, whereas v is equal to 4.3 using FUS-
CHIA. This is due partially to the suboptimal use of FUS-
CHIA with a compact pupil: since we reject the outer
parts of the OTF peaks, not all data are entirely used.
Furthermore, there are static aberrations on the refer-
ence mirror, whose values of tilt aberrations lie between
A/600 and \/15, and FUSCHIA performance was shown
to degrade as the value of tilt aberration increases.
Nevertheless, tip/tilt sensing at low flux is possible;
with the iterative estimator, the 1.21 nm repeatability
specified for DWARF is reached for 3.3Xx10* photo-
electrons, which corresponds to a SNR of 11; using FUS-
CHIA, it is obtained for 1.6 X10° photo-electrons (SNR
=27). As expected, the detector noise dominates under
1.4 X 10* photo-electrons (i.e., SNR=6).

6. CONCLUSION AND OPEN ISSUES

The cophasing of a MAOT requires the estimation of the
piston and tip/tilt on each subaperture of its pupil. Focal-
plane approaches, such as phase diversity, now constitute
serious alternatives to pupil-plane methods. Phase diver-
sity, however, is not very much used for cophasing, as it
requires the analysis of two images and its conventional
implementation is slow due to its iterative nature.

In this paper we have shown that a single focal image
is sufficient for MAOT cophasing as long as the pupil is
nonredundant and preferably diluted (even though
slightly compact ones may still be used). Adopting a LS
approach, we have derived an initial first phase-retrieval
estimator. Based on a conventional iterative gradient-
descent algorithm, its behavior and performance are typi-
cal of current focal-plane solutions. Then under the fur-
ther assumption of small phases, we have also derived an
analytical expression of the piston and tip/tilt aberrations
on each subaperture and consequently a second estimator
(FUSCHIA). Both algorithms were validated by simula-
tions. Their performance in closed loop are shown to be
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Fig. 13. Tilt repeatability estimated with FUSCHIA and the it-
erative algorithm.
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extremely close, and excellent overall (<1.0 nm error on
the piston and tilt estimates for a flux greater 10° photo-
electrons per pixel). The best use of FUSCHIA is in closed
loop or in open loop for piston estimation in conjunction
with the iterative estimator for tilt estimation. FUSCHIA
is about 20 times faster than the iterative estimator and
thus particularly suitable for real-time cophasing.

Experimental validations were also carried out on the
ONERA laboratory test bench BRISE, a multipurpose test
bed for cophasing sensors. Results show that using FUS-
CHIA or the iterative algorithm, piston can be estimated
on spectral band of width A\/8 with a subnanometric re-
peatability reached for a SNR of 50. Tilt is reconstructed
as long as the PSFs are superimposed; beyond this do-
main, FUSCHIA does not work. Between [-\/4, +\/4],
nanometric performance is obtained for a SNR respec-
tively equal to 27 and 11 for FUSCHIA and the iterative
algorithm. This demonstrates than an accurate real-time
piston/tip/tilt correction is possible.

A rather simple cophasing sensor, composed of a focus-
ing device, a fast focal-plane detector, and a standard
computer, can thus be used to cophase a number of paral-
lel optical beams with respect to piston and tip/tilt. Such a
simple setup minimizes the number of auxiliary optics
and thus the need for calibrating the differential paths.
This cophasing sensor can be used near the beam com-
biner of a stellar interferometer, which nowadays typi-
cally includes four to eight subapertures (with adaptive
optics when required). While designed for the maximum
number of beams, the sensor can also operate with a
smaller number of beams without any hardware change.
Another application is the control of a wide-field MAOT
with a pupil made of distributed circular subapertures
(such as the MAOT described in Mesrine et al. [7]), using
only the existing focal-plane detector and an unresolved
source (star or calibration source in the object plane).

Focal-plane cophasing sensors are most probably bound
to become as widely used as pupil-plane ones as they
overcome their initial limitations. In particular, the meth-
ods presented in this paper can be generalized to allow
the treatment of wide-spectral-bandwidth data. New de-
velopments on analytical phase diversity [29] are also a
very promising alternative for future real-time cophasing
systems.

APPENDIX A: APPROXIMATED OTF AND
PTF EXPRESSIONS FOR SMALL
ABERRATIONS

The following is a summary of several of F. Cassaing’s
theoretical results developed in his Ph.D. thesis [39],
which have been used in the derivation of the FUSCHIA
estimator. They demonstrate the existence of a modal ex-
pression of the OTF that is similar to the expression of
the pupil transmission using Zernike modes.

Equation (4) shows that the OTF is the sum of Ny
X Np subaperture correlations p,®p,,, with {n,n’}
e[1...Ny]. If ¢, is the phase on the subaperture n, then

Vol. 25, No. 5/May 2008/dJ. Opt. Soc. Am. A 1013

(028 ®pnr)(u)=Jf (@)’ +u)exp jlp,(u')
u' ek
- ¢ (u' +u)ldu’. (A1)

Let us call S(u) the overlapping area between the subap-
erture n and itself translated by . The product
II(z')I1(w’ +u) is null outside this area. For clarity of fur-
ther calculations, we will assume this product to be unity
inside S(u) (i.e., transmissions are unity). Note then that
Eq. (A1) is a sum of phasors. If the subaperture phases ¢,
and ¢, are small, then this sum can be approximated by
a phasor whose phase is ®,,,,/(u),

q)nn’(u)

=ff H@)(u' +u)d, ') - ¢, (u' +u)]du’
u' eR?

=ff [¢,(u') - ¢ (u' +u)ldu’, (A2)
u' eS(u)

and whose modulus is A(u):

Aw) =11 H)(u)=ff Mw)(u +u)du’
u' eR?

= f J 1du'. (A3)
u'eS(u)

This approximation means that the OTF is considered to
be the product of the unperturbed OTF A by a phase func-
tion, while the effects of the aberrations on the OTF
modulus are neglected:

(pn ®pn’)(u) = A(u)eXqu)nn’(u)] (A4)

Expanding the phase on Zernike modes as in Eq. (3) leads
to

D, (u) = f E [apZi(u') — apy Zy(u' +u)ldu’
u' eS(u) k=1

(A5)

Qpp = Qpp
—[Z,w) + Z;(u' +u)]
u eS(u)k 1 2

+ %[Zk(u’) Z,w +u)]}du (A6)
3
_E (ann zk + a Zk)(u)’ (A7)

where the following notation has been used:

A = ap, tap,, (A8)
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1
ZZ(u):EIJ (Z,w') + Zy(u' +uw)ldu’. (A9)
u' eS(u)

Due to the properties of Zernike polynomials, it can be
shown that if the radial order of Zernike polynomial Zj, is
even, then Z;,=0; and if it is odd, Z;=0. Consequently,
we will redefine Z, as the non-null corresponding polyno-
mials and afm, as the corresponding coefficient. Thus, if
Z,, is of even radial order,

k

Z,=2; a,,=a . (A10)
Otherwise, Z, is of odd radial order:
Z,=2;, o  =d,. (A11)

With this notation and Eq. (4), the final approximated ex-
pression of the OTF for small aberrations becomes

Np Np 3
s=2 > Aexp(jE ai‘;n,zk> * Oy, (A12)
n=1,/_

n'=1 k=1

It can be shown that those new modes Z;, Z,, and Z; are
proportional to the Zernike modes Z1, Z,, and Z3 scaled to
a double support. Consequently, Eq. (A12) is very similar
to the expression of the transmission in the pupil plane:

Ny 3
p= E IT eXp(.]E aknzk) * 5un'

(A13)

n=1 k=1
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